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i ABSTRACT

I
There is much current interest in the use of controlled excitations to manage

various types of flows. This work focuses on the use of dual-mode forcing to alter

dramatically the structure of round turbulent jets. Properly-combined qaxial and

3 helical excitations can cause a round jet to split into two distinct jets. This Y-shaped

jet, known as a bifurcating jet, exhibits spreading angles as high as 80 degrees.

I Vortex rings are formed at the jet exit and propagate along the two branches of the

jet. A vortex-filament code was developed for simulating the large-scale features of

bifurcating jets. The motion and interaction of the vortex structures in this flow

are tracked in a three-dimensional, Lagrangian coordinate system. This simulation

showed that ;nviscid vortex interactions cause the dramatic changes in jet develop-

ment and that spreading angle increases with axial Strouhal number.

3 The experimental apparatus consists of an acoustically-excited, 2-cm-diameter

air jet. The jet evolution is documented by flow visualization at velocities up to 75

3 m/s, Reynolds numbers up to 100,000, and Mach numbers up tc 0.22. Instantaneous

and phase-averaged cross-sections of the jet reveal the effects of forcing amplitude

3 on the structure and spreading angle of axially-excited, helically-excited, and bifur-

cating jets. The primary conclusions of this experiment are that dual-mode acoustic

3 excitation can produce bifurcation in air jets at high Reynolds numbers and that

the jet spreading angle increases with both excitation amplitudes, Additionally,

3 the excitation amplitude required to produce bifurcation increases with Reynolds

number, but the corresponding excitation Strnuhal number is invariant.

I
I
U

I vii

U



I

I TABLE OF CONTENTS

Page

Acknowledgments ............................. v

Abstract .......... ............................... t'|

Table of Contents ........... .......................... ix

List of Tables ................................... ... i. i

List of Figures ........... ............................ xv

Nomenclature ...................................... xxiii

Chapter

1. INTRODUCTION ......... ....................... 1

1.1 Background ................................. 1

1 1.1.1 Role and evolution of large structures .... ........ 2

1.1.2 Preferred modes of axisymmetric shear layers .. ..... 4

1.1.3 Characteristics of bifurcating and blooming jets . ... 5

1.2 Objectives .......... ........................ 6

5 1.3 Overview .................................. 7

1.4 Summary of results ..... ...................... 9

3 2. NUMERICAL METHOD ........ ................... 11

2.1 Discrete-vortex method ..... .................. .. 12

1 2.2 Vortex filaments ...... ..................... .. 15

2.3 Jet velocity function ...... ................... .. 17

1 2.4 Algorithm ....... ........................ .. 19

2.5 Refinements ................................ 2i

I 2.5.1 Multi-filament shear layer ... .............. .. 22

2.5.2 Multi-filament vortex ring ................. .. 24

5 2.5.3 Spline approximation .... ................ .. 24

3. N UMER IUOAL RESULTS .................... 27

3.1 Validation of code ...... .................... .. 27

3.2 Simulation of simple vortex interactions ............. .. 29

I ix
I



I

3.3 Analysis of a finite train of rings ...... .............. 31 i

3.4 Simulation of bifurcating jet .... ................ .. 33

3.5 Roll-up of excited shear layer .... ............... .. 36

3.6 Rings with non-uniform cores .... ............... .. 39

3.7 Improvement by spline approximation ............... ... 40

3.8 Summary ........ ........................ .42 i
4. EXPERIMENTAL APPARATUS AND APPROACH ........ .. 43

4.1 Low-speed jet apparatus ..... ................. .. 44 I
4.2 High-speed jet apparatus ..... ................. ... 45

4.3 Excitation system ........ .................... 48

4.4 Fiow-visualization techniques .... ............... .. 49

4.5 Velocity and pressure measurements ... ............ .. 53

5. EXPERIMENTAL RESULTS ...... .................. .57

5.1 Natural jet ....... ....................... .57

5.2 Axially-excited jet ........ .................... 61

5.3 Heli'aily-excited jet ...... .................... .66 3
5.4 Bifurcating jet ....... ...................... .67

5.5 Summary ........ ........................ .71

6. DISCUSSION ........ ......................... .73

6.1 Nat ural states of axisymmetric jets ... ............. .. 73

6.2 Structure and features of bifurcating jets ............ ... 74

6.3 Role of excitation frequency ..... ................ .75 3
6.4 Role of excitation amplitude and phase ..... ........... 76

6.5 Comparison of computations and experiments .......... ... 77

6.6 Mechanism of bifurcation ..... ................. .78

6.7 Some thoughts on jet flow control .... ............. .. 79 3
7. CONCLUSIONS AND RECOMMENDATIONS ............ ... 81

7.1 Conclusions ....... ....................... ... 81 3
7.2 Recommendations ........ .................... 82

xI
I



I

I Appendix A: Derivation of Induced-Velocity Functions .... ......... 85

Appendix B: Program Listings .... ................... ... 89

Appendix C: Tables of Parameters .... ................ ... 127

References .................................. .... 129

Figures ..................................... .... 135

I
I
I
I
I
I
U
I
I
I
I
I
I
I xi

U



I

I LIST OF TABLES

I
Table Page

i C.1 Parameters of Bifurcating Jet Simulations ..... ............ 127

C.2 Comparison of Physical Parameters ...... ............... 127

C.3 Parameters of Bifurcating Jet Experiments ..... ........... 128

i
I
i
I
i
i
i
I
I
i
I

I
II
II



I

I LIST OF FIGURES

Figure Page

1.1 Side and end views of bifurcating jet at Re =- 4300 and St = 0.46

(from Lee & Reynolds 1985b) ..... ................ .... 135

1.2 Side and end views of blooming jet at Re = 4300 and St = 0.46

(from Lee & Reynolds 1985b) ..... ................ .... 136

I 1.3 Dependence of bifurcation angle on axial excitation frequency

(from Lee & Reynolds 1985b) ..... ................ .... 137

* 1.4 Mean velocity profile of bifurcating jet in the bifurcating plane

(from Lee & Reynolds 1985b). Re = 4300 and St = 0.46. ... 138

1 2.1 Schematic of numerical model .... ................ ... 139

2.2 Flow chart of numerical algorithm ................. .... 140

3.1 Calculation of self-induced velocity ................. ... 141

3.2 Velocity field of a vortex ring. & = 0.1 .............. ... 142

3.3 Velocity field in the core of a vortex ring. 0 0.1 ... ....... 143

3.4 Upstream velocity field of jet source flow ............. ..... 144

3.5 Velocity field near the exit of jet source flow. ... ......... 145

3.6 Downstream velocity field of jet source flow ..... .......... 146

f 3.7 Comparison of jet function velocity fields at different &:

(a) 6- =-0.1, (b) & = 0.01 ...... .................. .... 147

1 3.8 Evolution of unexcited, axisymmetric shear layer

(source flow not included) ..... ................. ... 148

I 3.9 Example of numerical instability in axisymmetric

shear layer calculations ..... ................... ..... 149

3.10 Convection velocity of a train of rings (N, = 41). ... ....... 150

3.11 Instantaneous velocity profiles of a train of rings for

(a) N, = 5 and (b) N, = 41. ....................... 151

3.12 Mean streamwise velocity profile of a train of rings for

(a) Nv = 5 and (b) N, = 41. ....................... 152

Ii xv
I



I

3.13 Momentum flux of a train of rings (Nv = 41) ........... .... 153 U
3.14 Comparison of bifurcating jet simulations at Sta = 0.3

(a) without and (b) with source flow ................ .... 154

3.15 Comparison of bifurcating jet3 at Sta = 0.30 and at
(A - 0.1 and (b) Ah = 0.5 . . .. . . . . . . . . .. . 155

3.16 Comparison of bifurcating jets at Sta = 0.35 and at

(a) Ah = 0.3 and (b) Ah = 0.5 .... ............... .... 156

3.17 Evolution of bifurcating jet at Sta = 0.30 and Ah = 0.5. 157

3.18 Evolution of bifurcating jet at St. = 0.40 and Ah = 0.5. 158

3.19 End views of bifurcating jets at Ah = 0.5 and at

(a) St= 0.30 and (b) Sta = 0.40 .... .............. .... 159

3.20 Bifurcating jet at Sta = 0.42 and Ah = 0.5 and

at two different times ...... ................... .... 160

3.21 Dependence of bifurcation angle on Sta (Ah = 0.5). .. ...... 161

3.22 Onset of bifurcation at (a) Sta = 0.30, (b) Sta = 0.42,

and (c) Sta = 0.43 ....... ..................... .... 162

3.23 Initial ring formation in the (a) absence and

(b) presence of source flow ..... ................. .... 163

3.24 Comparison of (a) unforced and (b) forced (Aa = 0.2)

axisymmetric shear layers. ....... ................. 164

3.25 Forced axisymmetric shear layers corresponding to different

matching schemes at Sta = 0.4 and Aa = 0.2: 3
(a) quadrature, (b) integral, and (c) growth ............. ... 165

3.26 Ax ,isymrnetric shear layer simulations using (a) 10 and

(b) 20 filaments per excitation period (growth matching). 166

3.27 Evolution of forced axisymmetric shear layer

at St,, = 0.4 and Aa = 0.2 ..... ................. .... 167

3.28 Effect of forcing level ((a) Aa = 0.5 and (b) Aa = 0.20) on

axisymretric shear layer development at Sta = 0.4. .. ...... 168

3.29 Effect of temporal variations of core radius ............ ... 169

3.30 Side view of initial development of helically-excited jet (Ah = 0.5) 170

xvi I



I

1 3.31 End view of initial development of helically-excited jet (Ah = 0.5). 171

3.32 Interaction of a pair of side-by-side, multi-filament rings. 172

3.33 Interaction of a pair of eccentric, multi-filament rings ..... 173

U 3.34 Calculation of self-induccd velocity by linear-segment

and cubic-spline methods ..... .................. ... 174

.I.1 Schematic of low-speed apparatus ... .............. ... 175

'4.2 Schematic of high-speed apparatus ................. ... 176

t ,.3 Streamwise velocity fluctuations (at z/D - 0.05 and r/D 0.0)

corresponding to different excitation levels produced by

3 internal driver at 2060 Hz. ........................ 177

5.1 Mean and fluctuating velocity profiles at Re = 10,000

3 and z/D = 0.1. ............................ .... 178

5.2 Mean and fluctuating velocity profiles at Re = 25,000

3 and ziD = 0.05 ............................. ... 179

5.3 Mean and fluctuating velocity profiles at Re = 50,000

j and z!D = 0.05 ............................. ... 180

5.4 Mean and fluctuating velocity profiles at Re = 100,000

and z/D = 0.05 ....... ...................... ... 181

5.5 Axisymmetric shear layer profiles at various Reynolds numbers. 182

5.6 Comparison of shear layer profiles with and without blowing

(Re = 50,000). . . ..................... 183

5.7 Comparison of shear layer profiles with and without blowing

(Re = 100,000) .............................. .... 183

5 3.8 Instantaneous cross-section of natural jet at Re 50,000. 184

5.9 Instantaneous cross-section of natural jet at Re 100,000. 185

.5.10 Instantaneousi cross-section of natural jet at Re 100,000. 186

5.11 Multipie-exposure cross-section of natural jet at Re = 50,000

I (F -= 17) ................................. ..... 187

5.12 Multipl'-exposure cross-section of natural jet at Re = 100,000

I (F - 17) ................................. ...... 188

I xvii

I



5.13 Multiple-exposure croqs-section of natural jet at Re = 25,000 1
(F .i). ....... ........................ .... 189 1

5.14 Multiple-exposure cross-section of natural jet at Re = 25,000

(F 4'....... .. ........................ .... 190 i

5.15 Comparison of natural and axially-excited jets at Re = 10,000. 191

5.16 Axially-excited jet at Re = 20,000, Sta = 0.55,

and p, - 1.6% (F-- 1) ...... .................. .... 192

5.17 Axially-excited jet at Re = 10,000, Sta = 0.55,

and P, -- 12% (F = 1) ...... .................. ... 193 i
5.18 Instantaneous pictures of axially-excited jet at different phases

.3f excitation (Re = 10,000, Sta = 0.55, and Pa = 12%). . . 194

5.19 Phage-averaged pictures of axially-excited jet at phase intervals

of 90" (Re = 100,000, Sta 0.55, and Pa = 2.8%) ... ...... 195

5.20 AxIally-excited jet at Re 50,000, Sta = 0.55, 5
and p, = 1.4% (F - 1) ...... .................. .... 196

5.21 Axiailv-excited jet at Re = 100,000, Sta = 0.55, 1
and a 5.4% (F = 1) ...... .................. .... 197

5.22 Axially-excited jet at Re = 50,000 and Sta = 0.55 and at 3
different Pa: (a) 1.4%, (b) 2.7%, (c) 6.5%, and (d) 13%. F = 1. 198

5.23 Axially-excited jet at Re = 50,000 and Sta = 0.55 and at

different pa: (a) 1.4%, (b) 2.7%, (c) 6.5%, and (d) 13%. F = 17. 199

5.24 Axially-excited jet at Re = 100,000 and Sta = 0.55 and at 3
different P: (a) 0.3%, (b) 0.6%, (c) 2.8%, and (d) 5.5%. F = 1. 200

5.25 Axially-excited jet at Re = 100,000 and Sta = 0.55 and at i

different Pa: (a) 0.3%, (b) 0.6%, (c) 2.8%, and (d) 5.5%. F 17. 201

5.26 Axially-excited jet at Re = 25,000, Sta = 0.55, 3
and P0, 18% ;(F= 4) ...... .................. ... 202

5.27 Axially-excited jet at Re = 25,000 and Sta = 0.55 and at 5
different p,: (a) 4.6%, (b) 11%, (c) 22%, and (d) 43%. F = 8. 203

5.28 Axiaily-excited jet at Re = 100,000 and Pa = 2.8% and at 3
different St,: (a) 0.55, (b) 0.60, and (c) 0.65. F = 17. 204

xviii

U



I

1 5.29 Axially-excited jet at Re = 50,000 and Sta - .55 and

different Pa: (a) 0%, (b) 0.5%, and (c) 2.1%. F = 8.

The axial excitation is produced by the driver in the plenum. 205

1 5.30 Comparison of the effects of (a) internal (p = 0.24% and F = 8)

and (b) external (15 = 0.30% and F = 17) axial forcing

at Re = 100,000 and St, = 0.55 ....... .............. 206

5.31 Comparison of the effects of (a) internal (p = 1.9% and F = 8)

3 and (b) external (p = 2.7% and F = 17) axial forcing

at Re = 100,000 and Sta = 0.55 ...... .. ........... 207

3 5.32 Helically-excited jet at Re = 25,000, Sth = 0.28,

and Ph = 0.2% (F = 1) ..... .................. ..... 208

5.33 Helically-excited jet at Re = 50,000, Sth = 0.28,

and Ph = 2.4% (F = 1) ..... .................. ..... 209

1 5.34 Helically-excited jet at Re = 100,000, St h = 0.27,

and Ph = 0.7% (F = 1) ..... .................. ..... 210

5.35 Helically-excited jet at Re = 50,000 and St, = 0.28 and at

different Ph: (a) 0.3%, (b) 0.6%, (c) 1.2%, and (d) 2.4%. F = 17. 211

5.36 "elically-excited jet at Re = 100,000 and St, = 0.27 and at

different Ph: (a) 0.1%, (b) 0.2%, (c) 0.4%, and (d) 0.7%. F = 17. 212

.27 Helically-excited jet at Re = 100,000 and Ph = 0.3% and at

different Sth: (a) 0.27, (b) 0.30, and (c) 0.32. F = 17. . 213

3 5.38 Helically-excited jet at Re = 100, 000 and Ph = 0.7% and at

different Sth: (a) 0.27, (b) 0.30, and (c) 0.32. F = 17. . 214

1 5.39 Close-up view of helically-excited jet at Re = 100,000 and

Ph 0.3% and at different Sth: (a) 0.27, (b) 0.30, and (c) 0.32.

F 17 ..................................... 215

5.40 Close-up view of helically-excited jet at Re = 100,000 and

I Ph = 0.7% and at different Sth: (a) 0.27, (b) 0.30, and (c) 0.32.

F =17 ..................................... 216

xix

I



5.41 Phase-evolution of a helically-excited jet at Re = 100,000, 1
Sth = 0.27, and Ph = 0.7% (F = 17).

The phase increment is 45 ......................... 217 1
5.42 Bifurcating jet at Re = 10,000, Sta = 0.55, Pa = 12%, I

and Ph = 3.8%. F = 1 ..... .................... ... 219

5.43 Phase-evolution of bifurcating jet at Re = 10, 000, Sta = 0.55, m
Pa = 12%, and Ph = 3.8%. F = 1 ................. .. 220

5.44 Bifurcating jet at Re = 50,000, Sta = 0.55, pa = 6.5%, I
and Ph = 1.2%. F = 1 ..... .................... .... 223

5.45 Bifurcating jet at Re = 100,000, Sta = 0.55, Pa = 1.4%,

and Ph = 0.71%. F = 1 ......... .................... 224

5.46 Bifurcating jet at Re = 100,000, Sta = 0.55, Pa = 2.8%,

and Ph = 0.36%. F = 1 .... .................... ... 225

5.47 Phase-evolution of bifurcating jet at Re = 100,000, Sta = 0.55, 1
Pa = 2.8%, and Ph = 0.71%. F = 17.

The phase increment is 45 ......................... 226

5.48 Bifurcating jet viewed in the bifurcating and transverse planes

(Re = 100,000 and St = 0.55). F = 8. The axial excitation I
is produced by the driver in the plenum (Pa = 1.8% and Ph = 1.4%). 228

5.49 Cross-sections of the bifurcating jet in different azimuthal planes 3
(le = 1W, 000, Sta = 0.55, pa = 1.4%, and Ph = 0.69%). F = 17.

The phase increment between successive planes is 30 ... .... . 229 1
5.50 Bifurcating jet at Re = 50,000, Sta = 0.55, Pa = 1.4%,

and ph =(a) 0.30%, (b) 0.60%, (c) 1.2%, (d) 2.4%. F 1 ..... ... 231 3
5.51 Bifurcating jet at Re = 50,000, Sta = 0.55, Pa = 6.5%,

and Ph =(a) 0.30%, (b) 0.60%, (c) 1.2%, (d) 2.4%. F = 1 ..... .... 232 1
5.52 Bifurcating jet at Re = 50,000, Sta = 0.55, Pa = 1.4%,

and Ph =(a) 0.30%, (b) 0.60%, (c) 1.2%, (d) 2.4%. F = 17. 233 1
5.53 Bifurcating jet at Re = 50,000, Sta = 0.55, pa = 6.5%,

and Ph =(a) 0.30%, (b) 0.60%, (c) 1.2%, (d) 2.4%. F = 17. 234 1

xx



I

1 5.54 Bifurcating jet at Re = 50,000, Sta = 0.55, Pa = 6.5%,

and Ph = 1.2%. F = 17 ...... ....................... .. 235

5.55 Comparison of (a) phase-averaged (F = 17) and (b) instantaneous (F = 1)

3 realizations of a bifurcating jet (Re = 100, 000, Sta = 0.55,

Pa = 2.8%, and ph = 0.71%) ..... .................... .. 236

1 5.56 Bifurcating jet at Re = 100,000, Sta = 0.55, Pa = 2.8%,

and Ph =(a) 0.09%, (b) 0.18%, (c) 0.36%, (d) 0.71%. F = 17 ...... ... 237

3 5.57 Bifurcating jet at Re = 100,000, Sta = 0.55, Ph = 0.36%,

and Pa =(a) 0%, (b) 0.29%, (c) 1.4%, (d) 2.8%. F = 1 .... ......... 238

1 5.58 Bifurcating jet at Re = 100,000, Sta = 0.55, Ph = 0.36%,

and Pa =(a) 0.29%, (b) 1.4%, (c) 2.8%, (d) 5.5%. F = 17 ........... 239

3 5.59 Bifurcating jet at Re = 100,000, Sta = 0.55, pa = 1.4%,

and ph = 0.71%. F = 17 ...... ...................... .. 240

5.60 Bifurcating jet at Re = 100,000, Pa = 5.5%, Ph = 0.69%,

and Sta =(a) 0.55, (b) 0.60, and (c) 0.65. F = 1 .... ............ 241

5.61 Bifurcating jet at Re = 100,000, Pa = 5.5%, Ph = 0.&)1,

and Sta =(a) 0.55, (b) 0.60, and (c) 0.65. F = 17 .... ........... 242

3 5.62 Bifurcating jet at Re = 100,000, Pa = 2.8%, Ph = 0.29%,

and Sta =(a) 0.55, (b) 0.60, and (c) 0.65. F = 17 .... ........... 243

3 5.63 Comparison of the effects of (a) separate (Pa = 0.95%, Ph = 0.36%, and

F = 8) and (b) combined (Pa = 1.4%, Ph = 0.36%, and F = 17)

excitations on bifurcating jets at Re = 100,000 and Sta = 0.55 ..... 244

5.64 Comparison of the effects of (a) separate (Pa = 1.8%, Ph = 1.4%, and

I F = 8) and (b) combined (Pa = 2.8%, Ph = 1.4%, and F = 17)

excitations on bifurcating jets at Re = 100, 000 and Sta 0.55..... 245

5.65 Dependence of bifurcating jet's spreading angle on excitation

amplitude at Sta = 0.55 and at Re = (a) 100,000 and (b) 50,000.

3 Axial and helical excitations are both produced by the external

acoustic drivers ........ .......................... .. 246

I xxi
I



5.66 Dependence of bifurcating jet's spreading angle on excitation

amplitudes at Re = 10,000 and 100,000 and at St. = 0.55.

Axial excitation is produced by internal acoustic driver. . . 248

5.67 Velocity profiles of naturai and bifurcating jets at Re = 100,000

and z/D = 8.5. Separate excitations are used in the bifurcating

jet, with Pa = 1.8% and Ph = 1.4% ..... ............. 249

~11



I

i NOMENCLATURE

Roman Symbols

I Aa, Ah axial and helical excitation amplitude

D diameter of nozzle or of cylindrical vortex sheet

E anemometer bridge voltage

E(m) complete elliptic integral of the second kind

E 0  King's law parameter

f frequency

fA, fh axial and helical excitation frequencies

fA natural frequency of shear layer

fA vortex-passage frequency

F spatially-averaged, nondimensional, axial momentum flux or

number of light pulses per exposure

h size of subinterval

I() intermediate integral

k King's law parameter

K(m) complete elliptic integral of the first kind

1 measured distance between vortical structures

m, m 1  arguments of elliptic integrals

n node index or King's law exponent

p' rms acoustic perturbation

p nondimensional pressure perturbation, pt/( PU 2)

Pref reference pressure, 2 x 10- 5 Pa

Q" partial integral over intervals i to j

r radial coordinate

r(C) three-dimensional space curve

R radius of vortex ring or of cylindrical vortex sheet

)Z ratio of axial to helical frequency

ring-spacing ratio
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Re Reynolds number, UD/v I
s distance between adjacent vortex rings !

SPL sound pressure level

StD Strouhal number, f D/U

Sta, Sth axial and helical Strouhal numbers

Sto Strouhal number, fO/U I
t time

T temperature 5
T(iii 1 ) Teri integral

u instantaneous-velocity vector 5
u1 rms fluctuation of axial velocity

uc convection velocity I
Ur radial component of velocity

us self-induced velocity I
Uz streamwise component of velocity

U time-averaged axial velocity 5
x three-dimensional space coordinate

z streamwise coordinate 3
Greek Symbols I
a parameter of Biot-Savart integral 3
13 bifurcation angle

I circulation per unit length 5
"i time average of -y

F circulation of vortex filament 3
b nozzle displacement or core parameter

&, vorticity thickness of shear layer 5
A magnitude of core asymmetry

St time step of simulation 5
At time interval between creation of filaments
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0 momentum thickness or azimuthal coordinate

5kinematic viscosity

vortex-filament parameter

3 p density

a nominal core radius

3 azimuthal angle

w vorticity vector
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I Chapter 1

j INTRODUCTION

3 Much current interest in the field of fluid mechanics relates to the use of con-

trolled excitations to manage various types of flows. This work focus on the use of

3 dual-mode, dual-frequency, acoustic forcing to alter dramatically the structure of

round, turbulent, air jets. Dual-mode refers to the combination of axial and helical

3 perturbations. Dual-frequency denotes that these two different types of perturba-

tions are single frequency excitations of differing frequency.

1 Properly-combined axial and helical excitations can cause a round jet to split

into two distinct jets. This Y-shaped jet, known as a bifurcating jet, exhibits spread-

ing angles as high as 80'. Vortex rings are formed at the jet exit and propagate

along the two branches of the jet. This study is a combined computational and ex-

perimental investigation of bifurcating jets at high Reynolds numbers. The aim of

this effort is to understand the mechanism causing bifurcation and to document vi-

sually the response of the bifurcating jet to variations in several flow and excitation

3 parameters.

3 1.1 Background

3 The sensitivity of jets to sound has fascinated researchers for many decades. In

the middle of the 19th century, Leconte (1858) and Tyndall (1867) demonstrated

I this sensitivity in jets with and without combustion. Early in this century, Brown

(1935) demonstrated that laminar jets develop vortex structures and increase in

3 spreading angle in response to acoustic excitation at various critical frequencies.

Understanding the nature of a jet's response to sound and other perturbations

3 is a key to knowing how to use controlled excitations to transform a jet from its

natural state to some desired state. Due to the Kelvin-Helmholtz instability, the

shear layer of a jet naturally rolls up into distinct vortex rings in a somewhat random

I



U

manner. These structures are directly related to a jet's growth, and their formation I
is very sensitive to perturbations over a wide range of frequencies.

There is a tremendous amount of information in the literature about the struc-

ture, evolution, and control of turbulent shear layers. For an extensive overview,

the reader should consult the reviews by Cantwell (1981) and Ho & Huerre (1984).

The works cited in the following pages are those which, to our knowledge, relate 3
most closely to the present study.

1.1.1 Role and evolution of large structures I
The current interest in the role of organized structures in turbulent shear flows

Wa bparked primarily by the works of Crow and Champagne (1971), Brown and

Roshko (1974), and Winant and Browand (1974). Crow and Champagne (1971)

found that the structure of round turbulent jets at a Reynolds number, based on

diameter, around 104 includes large-scale vortex 'puffs'. Brown and Roshko (1974) 1
showed that 'large coherent structures' are the dominant feature of mixing layers

even over a wide range of density ratios. As a result of their study of planar mixing

layers, Winant and Browand (1974) proposed the pairing of large-scale vortex struc-

tures as the mechanism of mixing layer growth at moderate Reynolds numbers. The

term 'pairing' refers to the coalescence of two vortices into a single, larger structure.

Zaman and Hussain (1980) proposed that the pairing of structures in axisym- /

metric shear layers can be classified in terms of a shear layer mode and a jet column

mode. The 'shear layer mode' refers to the pairing of the small vortices initially I

formed by the shear layer. The spacing of these vortices is of the order of the shear

layer thickness. The 'jet column mode' refers to the pairing of the large vortices j
formed from the smaller ones. The typical spacing between these larger structures

is of the order of the jet diameter. They found that pairing in the shear layer mode 3
is most likely to occur if one excites the shear layer at a Strouhal number, based

on initial momentum thickness, of 0.012. Pairing in the jet column mode is most 3
likely to occur at a Strouhal number, based on diameter, of 0.85.

21

I



I

3 Other researchers have also shown that the vortex formation and pairing pro-

cesses can be controlled by axial excitation. Bouchard and Reynolds (1981) used

axial perturbations to control jet growth by enhancing or suppressing vortex pairing.

3 lo and Huang (1982) caused several vortices to coalesce into one larger structure

by forcing a planar mixing layer at a subharmonic of its most-amplified frequency.

* The number of vortices involved in a 'collective interaction' corresponds to the sub-

harmonic chosen. Ho and Huang found that high excitation levels (u'/U - 2%)

3 are typically required to cause a collective interaction. At low excitation levels,

only vortex pairings occur. At very high levels, the mixing layer forms a large

3 vortex directly, bypassing the stage of vortex pairings or collective interactions. Ar-

bey & Williams (1984) demonstrated control of the generation of harmonics and

5subharmonics in a jet by controlling the phase between the fundamental and the

harmonically-related signal.

i In a flow-visualization study of a round jet, Hussain and Clark (1981) showed

that the typical view of axisymmetric mixing layer growth by orderly vortex pair-

5ings is not accurate at very high Reynolds numbers (Re = 360,000). Instead,

they observed that "most of the time the mixing layer is in a state of disorganiza-

Stion, consisting of relatively smaller scale, random and diffuse turbulent motions."

They found that the large scale structures did not evolve from complete pairings of

3 smaller structures. Typically, only segments of vortical structures would combine

('fractional pairing'), or one structure would engulf only part of another structure

3 ('partial pairing'). However, axial forcing can produce a stable, orderly arrange-

ment of vortex structures (Lepicovsky et al. 1986). Lepicovsky et al. studied the

3 effects of axial forcing on heated (temperatures up to 800'K) and unheated jets in

the ranges of 350, 000 < Re < 1,300,000 and 0.3 < M < 0.8.

I By altering the orientation or shape of the large-scale structures in a jet, one

can modify the jet's spreading and entrainment. In their work with inclined and

stepped nozzles, Wlezien and Kibens (1984) found that the jet shear layer growth

is enhanced in some azimuthal planes but suppressed in others. Ho and Gutmark
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(1987) found that the entrainment ratio of a small-aspect-ratio elliptic jet is several

times higher than that of the corresponding circular jet.

1.1.2 Preferred modes of axisymmetric shear layers

While the interaction of vortex structures is a strongly nonlinear process, linear

stability theory can fairly accurately model many features of the initial development

of the mixing layer (Michalke & Hermann 1982, Ho & Huerre 1984, Gaster et

al. 1985, Samet & Petersen 1987, and Monkewitz 1988). These features include

amplification of disturbances, pairing events, and the effects of velocity ratio.

The shear layer amplifies disturbances over a broad frequency range. The fre-

quency corresponding to the peak of the amplification curve is typically called the

natural or most-amplified frequency. In planar and axisymmetric mixing layers

with a hyperbolic-tangent velocity profile and a velocity ratio of unity, the Strouhal

number (fO/U) of the initially most-amplified disturbance is 0.017 (Ho & Huerre

1984 and Michalke 1972). In axisymmetric shear layers, this Strouhal number in-

creases as the velk :ity ratio decreases and as one moves downstream from the jet

exit (Michalke & Hermann 1982). The velocity ratio of a mixing layer is typically

defined as (U1 - U2 )/(U 1 + U2), where U1 and U2 are the velocitieq of the two streams

and U1 > U2 . The corresponding momentum thickness, 0, of the axisymmetric shear

layer is defined by

fj w (U(r) -U2 )( Ufr) -U 2 \dr

Both axisymmetric and helical disturbances are amplified in circular jets (Chan

1977). The amplification of axisymmetric disturbances is stronger in the near field,

but the first-order helical distrubances are more strongly amplified in the far field

(Michalke & Hermann 1982 and Tso & Hussain 1987). Michalke & Hermann (1982)

also showed that according to stability theory the amplification of helical distur-

bances in the near field will be greater than that of axisymmetric ones if the dis-

turbance frequency is much less than the natural frequency.

In their study of excited circular jets with thin boundary layers, Crow and

Champagne (1971) found that the Strouhal number (fD/U) of the azisymmetric

4
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I disturbance that can sustain the greatest total amplificvtion is 0.3. They referred

to this disturbance as the 'preferred mode' of the jet. This concept of a preferred

mode implies the existence of a global instability in jet flows and should not be

3 (onftlsed with the initial shear layer instability discussed earlier. The preferred

iiode also corresponds to the dominant large-scale, axisymmetric structures in un-

firturbed jets. lussain and Zaman (1981) found that the shape and orientation

of these structures are essentially the same whether the boundary layer is laminar

3 or turbulent but that the characteristics of these structures depend on Reynolds

nruer.

3 The existence of a preferred mode has been confirmed by many researchers, but

there has been no agreement on the corresponding Strouhal number. Gutmark and

3 Ito (1983) found a variation from 0.24 to 0.64 in the works they surveyed. They

a~triimted this scatter to initial conditions. Initial conditions are important when

£ qo controlled excitations are used since the initial conditions affect the formation of

tle small vortex structures which subsequently combine to form the large structures

5a.ssociated with the preferred mode.

Recently, Petersen and Samet (1987) have shown that the preferred mode can

3 be understood in terms of local instability concepts. They demonstrate that the

naturally-occurring shear layer instabilities scale with the local momentum thickness

Iand that the preferred mode corresponds to the local shear layer instability near

the end of the potential core. They attribute the apparent existence of a preferred

mode to the fact that beyond the potential core region helical disturbances are more

strongly amplified than are axisymmetric ones.

1.1.3 C.'haracteristics of bifurcating and blooming jets

3 The work that laid the foundation for the current study is the work of Lee &

f?inoids (1982, 198.5a, & 1985b). They discovered that dual-mode, dual-frequency

3 forcing can produce a bifurcating jet (Fig. 1.1). The bifurcating jet occurs when

r o rati o, ),. of the axial to the helical frequency is exactly two. When Rf is non-

I irithger between 1.6 and 3.2, the jet explodes into a shower of vortex rings (Fig. 1.2).

Since this jet reminded them of flowers blooming, they named it the blooming jet.
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'Ihe work of Lee & Reynolds involved mechanically-excited water jets in the

b'evnlhis i, urober range of 2,800 to 10,000. A diaphragm on the piston driving

-ho fiovw provided a large amplitude nxial excitation (u/U = 17%). The helical

ex, itatloH) was achieved by moving the tip of the nozzle in a circular orbit about the

m:inl jet centerline. The peak-to-peak displacement amplitude of the nozzle's

tip wa-_a 4"'j of the jet diameter.

Le &- Reynolds (1985b) showed that bifurcating jets only occur within a range

of inrha irribers (0.35-0.7). Over most of that range, the angle formed by the

[.;(, i)ra cihes of the jet increases with Strouhal number (Fig. 1.3). They also found

that the -mean velocity profile of a bifurcating jet has two peaks corresponding to the

JitC, two hra:(ches (Fig. 1.4). These two peaks remain separate and distinct up to

.,5 ,iatnR:ters from the jet exit. Their chemical reaction experiments demonstrated

-::t the bifurcating jet, along with blooming jets, exhibits enhanced mixing relative

to the natra jot.

"his review has presented some of the past and present findings regarding the

role of large scale structures in shear flows, the existence of instability modes in

axisynrinetric shear layers, and the characteristics of bifurcating and blooming jets.

The rct of this chapter summarizes the objectives, approach, and results of the

current work.

1.2 Objectives

.N1.it important technological devices rely on jet flows to accomplish their pur-

pose. his, the better we understand the fundamental physical processes in jet

flow ,, the better we can design these devices. If we can dramatically alter the de-

velroprror't a-nd characteristics of these flows, we can move beyond making small

irrlpr rn entF in devices to developing new generations of such devices.

The present work is part of several related but separate research projects aimcd

at firt hering our understanding of how to control jet flows. The work of Bouchard

arid i?,vnouds (1982) focused on the effects of various types of axial forcing on the
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growth and mixing in an axisymmetric shear layer. Lee and Reynolds (1985b) built

, n that work to demonstrate the effects of dual-mode forcing on the structure,

,I:fixing, and momentum of round turbulent jets. The present work extends the

3 discoveries of Lee and Reynolds to high Reynolds numbers, considers the effects

of various flow parameters, and develops a model for the instability mechanism

9 , b;furcating jets. New studies recently initiated by Koch, Powell, and Reynolds

and by Juvet and Reynolds will apply closed-loop control to jet flow manipulation

rinId will explore new forcing and measurement techniques applicable to complex jet

ilows.

3 'The present work had the following specific objectives:

1. To develop an understanding of the mechanisms causing bifurcation and bloom-I .
2. To develop a vortex-method code for simulating excited jet flows.

1 3. lo produce bifurcating air jets at high Reynolds numbers by acoustic excitation.

4. To study the effects of Reynolds number, Strouhal number, and the amplitude

and phase of the excitation signals on the large-scale characteristics of bifurcat-

3 imng jets.

1.3 Overview

"lc doninant presence anG related arrangement of vortex structures in both

the 1,bifurcating and blooming jets suggest that the same mechanisms govern both

5 l ifi.rcating and blooming jets. While the blooming jet might prove to be the most

1eful in potential applications of dual-mode forcing, the bifurcating jet provides

I ,htter test case for studying the effects of various flow and excitation parame-

l,,->. 1Unlike the blooming jet, the bifurcating jet occurs at only one value of Qf.

3 TFhis sirriplifies our choice of this parameter. Additionally, since the bifurcating jet

;pr(,ads in only one plane, it is more amenable to laser-sheet visualization.

S'T}ie current study of bifurtating jets involves both computational and exper-

11i i research. The computational work focuses primarily on understanding

*7
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the governing mechanism and on determining the dependence of jet spreading on

Strouhal number variations. The experimental work demonstrates the effectiveness

of dual-mode acoustic forcing in generating bifurcating jets and considers the effects

of Reynolds number, Strouhal number, and excitation amplitude and phase. Por-

tions of the computational and experimental results have been reported by Parekh

et al. (1983 & 1987), Leonard et al. (1985), and Parekh & Reynolds (1988).

Tlie computational work includes developing a jet simulation program, carrying

out a parametric study of bifurcating jets, and refining the numerical method.

The fundamental algorithm of this code is based on the discrete-vortex method

of ILeonard (1980). Unlike typical finite-difference schemes, vortex methods are

grid free and Lagrangian in nature. They focus on calculating the evolution of

a given vorticity field. The velocity field is not calculated directly but is derived

from the computed vorticity field. Our program is written in Fortran and executed

on a Cray X-IP supercomputer. The refinements of this program consist of both

improvements in the physical model and in the numerical method.

Since many potential applications of bifurcating jets could involve gas jets at

higher Reynolds numbers, one of the first steps of the current experimental research

was demonstration of the concept of dual-mode forcing in moderate-Reynolds-

number air jets. A low-speed air jet apparatus using acoustic excitation was de-

signed and built. The initial results with this apparatus included jets at Reynolds

numbers of 10,000 and 20,000 which correspond to exit velocities of 7 and 14 m/s.

The required excitation frequencies range from 80 to 400 Hz. 3
The next step in this experimental work was the design and fabrication of a high-

speed air jet apparatus. Jets at Reynolds numbers up to 100,000 and Mach numbers,

M, up to 0.22 were studied in this facility. The corresponding exit velocities and

excitation frequencies range up to 75 m/s and 2000 Hz, respectively. A different

acoustic excitation system was developed to provide the required high levels of

acoustic power at these higher frequencies.

8
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The experimental methods used included flow visualization, hot-wire anemome-

3 try, and condenser-microphone measurements. Since most of the questions of inter-

est concern global features of the jet structure, flow visualization was the primary

technique used. Additionally, flow visualization provides information that could

not be obtained by velocity measurements. With flow visualization one can see the

9details and structure of the entire flow field in one instant of time. In some cases

a picture is worth a thousand probes! The velocity and acoustic measurements

provide information about the jet exit conditions and the amplitude and phase of

the excitation.I
1.4 Summary of ResultsI

A combined numerical and experimental study of the effects of excitation fre-

3 quency, amplitude, and phase on the development of moderate and high Reynolds

numbers jets is described in the following chapters. Some of the primary conclusions

5 of this work are

1. Dual-mode acoustic excitation can produce bifurcating jets in air at Reynolds

3 numbers up to 100,000 and Mach numbers up to 0.22.

2. The bifurcation phenomenon can be modeled as an inviscid, vortex-interaction

I process. The axial excitation generates rings. The helical excitation displaces

them. The array of vortex rings produced by the combination of these two

I excitations is unstable as a result of the rings' mutually induced motions.

3. Bifurcation occurs only within a range of Strouhal numbers. Within that range,

the spreading angle increases with Strouhal number. The numerical simulations

predict that range to be 0.30-0.42. However, the experiments show that the

upper limit should be around 0.65.

I 4. The spreading angle increases with both excitation amplitudes. The results

suggest that bifurcation does not occur below certain levels and that jet spread-

3 ing does not continue to increase beyond certain limits. The bounds of this

amplitude range could not be clearly defined.1I
3



Other conclusions along with recommendations for related research are presented

in Chapter 7.
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I Chapter 2

NUMERICAL METHOD

3 The computational portion of Liis research was carried out concurrently with

the last stages of the experimental work of Lee and Reynolds and was continued

3 beyond the time of conclusion of their work. This timing provided a beneficial op-

portunity to enhance each project by joint sharing of insights and results. The work

3 of Lee and Reynolds suggested that since vortex structures are such a dominant fea-

ture of bifurcating jets, the computations might be able to successfully simulate the

3 large scale evolution of the jet by calculating the evolution of the vortex structures.

Additionally, the calculations demonstrated the effects of some key parameters on

3the jet evolution. These effects were subsequently investigated experimentally. The

results of the experiments of Lee and Reynolds and those of the computations pro-

3 vided valuable guidance in the planning of the high-Reynolds-nnmber experiments

described in later chapters.

I The objective of the computational work was not to calculate a detailed velocity

field for comparison with experiment. Rather, the objective was to determine the

I mechanism causing bifurcation and to estimate the effect of various parameters on

the structure of the jet. Thus, a code was written and developed based on the

discrete-vortex method, and this code was used to study the effects of excitation

frequency and amplitude on the spreading of the bifurcating jet.

The discrete-vortex method is ideal for studying this type of flow as specified

by the objectives noted above. Instead of a grid, the computational structure is the

vortex elements of the flow. The basic approach taken here involves an analytical

3 function to describe the source flow and discrete, computational vortex elements to

represent the vortex rings formed at the jet exit. The flow is assumed to be inviscid

3 and constant in density.

I
I 11
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2.1 Discrete-vortex method

There are many different schemes that could be classified as discrete-vortex

methods. The main similarities among them are that they discretize the vorticity

fieid, caaiae kie eN2uo of thz discrete vortex ements, and track the nioLion of

these elements in a Lagrangian reference frame. One can derive an equation for the

velocity field as a function of the vorticity field. The velocity field associated with

a vortex element is often referred to as the "induced" velocity field. The motion

of each vortex element is determined by the induced velocity due to itself and the

other vortex elements. It is this mutual induction process that is the heart of the

vortex method.

Since vortex methods typically assume an inviscid, constant-density fluid, they

are ideal for handling high Reynolds number flows in which the vorticity is confined

to small regions. By the theorems of Kelvin and Helmholtz, these assumptions

require that the vortex elements move just as fluid elements (see Batchelor 1967).

Thus. one can track the motion of fluid particles by simply tracking the motion

of the discrete vortices. To mark the motion of fluid particles that are not in the

vorticity containing regions of the flow, one can introduce po've particles in the

simulation and track their motion.

Though vortex methods have not had the benefit of all the attention that finite-

difference methods receive, many excellent researchers have succeeded in developing

vortex methods into a useful numerical method for solving certain classes of complex

fluid flows. For information on their work and on vortex methods in general, the

reader shou!d consult the excellent review articles by Saffman & Baker (1979) and

by Leonard (1980 & 1985). A recent example of the application of vortex methods

to a complex flow is the similation of the three-dimensional evolution of a plane

mixing layer by Ashurst & Meiburg (1988). They found that the streamwise vortical

structures originate in the braid region between the larger spanwise structures of

the mixing layer and that the initial evolution of these structures can be explained

in terms of inviscid vortex dynamics.

12
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m The equation that defines the velocity induced by a vortex element is known as

the Biot-Savart law for the velocity field. From the definition of vorticity,

W_ V x u, 2.1

and the constant-density continuity equation,

V •u = 0, 2.2

one finds that
V2 u = -v x wa. 2.3

I Using the infinite medium Green's function for Eqn. 2.3, one obtains the Biot-Savart

integral:
u1t [ (x- x') 2.U(X, t)= - X 4--'" [x (x', ) + VO, 2.4

47r x Ix dxT4

where -0 is the velocity potential that satisfies the inviscid boundary condition,

U nlsurface = 0. 2.5

Vector quantities are denoted by bold face type.

3 If the vortex element is a circular line filament of infinitesimal thickness, two

difficulties arise. First, a logarithmic singularity in the induced velocity field exists

3l along the filament. Second, due to self-induced motion, the filament propagates at

infinite speed. To handle these difficulties, vortex methods typically use filaments

3 whose vorticity is smoothed out within a finite core. This makes physical sense as

well since vorticity is not concentrated on a line but spread out within a tube. True

3 line vortices can only be approached in superfluids.

Numerically, each vortex filament is represented by a three-dimensional, periodic

space curve, r,( ,t), where i =1, 2, 3, ... , M (number of vortex elements), and C

is a material coordinate on the curve. When a space curve is defined in terms of

I discrete points (or nodes) on the curve, one can choose to be a discrete variable

such as node number.

13
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The use of discrete vortex filaments with finite cores leads to the following U
modified Biot-Savart integral which expresses the velocity, u, induced at a point, r, 3
by all the vortex filaments in the flow:

u(r) L Ir.J - rj(', t)I x × (Ct) 2.6
47r I- - r,(6,t)II + ag,23/2ri

where FJ is the circulation of vortex filament rj, o'j is the filament's core radius,

and a is a free parameter. To calculate the motion of a point on a vortex filament,

one uses the following similar equation: 3
a(ri r I [r( ,t) - rj(, t)] x dC'. 2.7(, t) r (',t)I 2 +a(u1

2 + Uj2)/2]3/2 dat 4r; iIre )r ,t 1+aa

Several different approaches to spreading the vorticity within the core have been

reported in the literature. Each approach leads to a different form of the Biot-Savart 3
integral. The approach that leads to Eqns. 2.6 and 2.7 is the Rosenhead-Moore

approximation as described by Leonard (1980). 3
By choosing a = 0.413, the self-induced velocity of a perfectly-circular ring

filament equals that of a vortex ring with a Gaussian distribution of vorticity for I
a/R < 1 (Leonard 1980). The nominal core radius, a, is uniform along each

filament. For an inviscid flow, the dynamics of the core is defined by

d (oi2Li) 0, 2.8 3
dt

where Li(t) is the instantaneous length of filament i. This corresponds to a conser- -
vation of volume and results in the magnitude of the vorticity increasing when the

vortex filament is stretched. Core dynamics and the parameter a are also discussed

by Leonard (1980 & 1985).

1
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1 2.2 Vortex filaments

3 The vortex filaments used in this simulation are three-dimensional rings. One

way of representing a ring is by a set of straight segments connected end to end

3 with a set of nodes corresponding to the points where two segments are connected.

This approach permits one to simulate a ring that changes shape as well as size

U and position. The velocity induced by a multi-segment filament is determined by

summing the contributions of each segment. The total induced velocity field is given

I by the sum of the velocities induced by all the filaments in the flow field.

Since the segments defining each filament are straight segments, one can in-

tegrate Eqn. 2.6 exactly to obtain an explicit expression for the velocity induced

by any segment. The velocity induced at a point by the vortex vector defined by

rj-(n + 1,t) - rJ(n,t) is given by

u(r) rj [ (1 - p) + E [(r- rj(n,t)) x e 2.9
47r ,/ (1- p)2 + A2  qJ A2IeI3

where n is the node number of the tail of the vector and

e = r(n + 1,t) - rJ(n,t), 2.10a

e. (r - r,(n,t))|P =-- JeJ2 2.0

q -- - rj( te 1 2 , 2.10c

x A2 = q2 _ 2. 2.10d

Thus, the velocity induced by all the vortex filaments is

u(r) -+-2.1 [ (1- 2 lel3 .
I V/ (1p)2±A2 q \1CI e
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Another way to represent a ring is by a single circular filament that can change I
in size but not shape. This type of filament is useful in simulations of axisymmetric

flows. Since the filament is assumed to remain circular, it can be specified in terms

of its radius and strearmwise position. By integrating Eqn. 2.6 along a circle of 3
radius, R, one can obtain the exact velocity field of a circular filament with a finite

core. This induced velocity is given by the following equations for the radial and 3
streamwise components, Ur and Uz:

(r/R)z [ 1 E(l - ml) - K( - nl)] 2.12a

and (/R) (1

F R (1(fZ) E(1 - in1 ) + 2K(1 - 2.12b

w here 

!

f R' 2.13a

z :~, 2.13b I
Z-R'

-= --R 2.13c U
rl 1 + f2 + ,2 + a62, 2.13d

2? -,2.13e

m 1 (1- ) 2.13f 3(1 + )

and E(m) and K(m) are complete elliptic integrals of the first and second kind, 3
respectively. For definitions of E(m) and K(m), see Eqn. A.7.

The exact solction for a circular filament, Eqn. 2.12, provides a useful means of 5
checking the accuracy of the multi-segment representation of filaments, Eqn. 2.11.

When computing ur by Eqn. 2.12a, one encounters a numerical singularity at f = 0. 3
This difficulty can be handled by treating that case as an exception and using the

exact solution, ur(O, 2) = 0. The details of the derivations of Eqns. 2.9 and 2.12, 1
along with polynomial approximations of E(m) and K(m), are given in Appendix A.

16I
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U 2.3 Jet velocity function

3 The simulation of a jet flow is incomplete without some means to account for

the jet source flow. The filaments only represent the vortex structures formed by

3 shear layer instabilities. However, by applying the Biot-Savart integral, Eqn. 2.6, to

a semi-infinite, cylindrical vortex sheet of finite thickness (Fig. 2.1), one can derive

3 an explicit function to define the mean jet flow. This function is referred to as the

"jet velocity function" and takes the following form:

Ur(7,) 2.14a

* and

2 1 2 f 2 +
2.14b3 2 [ ~ K(l - ml) + (,a -7) T(Aft!)] }

3 where

2 2p+_ +a, 2.15a

3= 2f .5
p

I0) f V'I- - g/cos 0

T(ft, ) =f 71 C os 0 dO. 2.15d

3 The variables f, z, &, u, r, and m1 were previously defined in Eqn. 2.13. The

parameter -1 is the circulation per unit length of the cylindrical vortex sheet. The

i details of the derivation of Eqn. 2.14 are presented in Appendix A.

The expression for the jet velocity function contains two definite integrals, I()

I and T(u, q). It is shown in Appendix A that the definite integral I(q) can be

expressed as elliptic integrals as follows:
2

I10 2 0 [K(1 - mi) - (I + fl) E(1 - ml) ] .  2.16

17



I

This expression contains a numerical singularity at r7 = 0. This difficulty can be I
handled by replacing I(qi) by T(O,f ) for 0 < 1. The integral T(t, ), however,

must be evaluated numerically.

An adaptive integration scheme based on the fourth-order Newton-Cotes method 3
was developed especially for evaluating T(ps, ,?). The adaptive scheme makes use of

two facts concerning the integrand. First, when ft and I -- 0, the integrand becomes 3
antisymmetric about 7r/2, and T(rl,fj) -+ 0. Second, as f4 or q -- 1, the integrand

approaches infinity for 0 < 1. Thus, the integration scheme distributes subinter- I
vals symmetrically about 7r/2, and the size of the subintervals become smaller and

smaller near the limits of integration as 2 or j --+ 1. By distributing the subintervals 3
in this way, one calculates exactly zero when p and fy = 0, and the computation

cost is kept low while maintaining a specified accuracy even when f or i -+ 1. 1

The fourth-order Newton-Cotes method assumes that the interval of integration

is divided into sets of four equally-sized subintervals. The partial integral Q over 3
one set of subintervals is found from the following equation:

Qi+- 4h[14fi + 64fi+i + 24fi+2 + 64f'+3 + 14f/+ 4 1, 2.17 1
where hi is the size of the subintervals and fi is the value of the integrand at 8j. 3

To make the method adaptive, the size of the subintervals are chosen according

to the following relations:

20 h0 , fori=0,1,2,...,7;
21h0 , for i = 8,9,10,11; I

ht 22 h0 , for i = 12, 13, 14, 15; 2.18

for i > 16.

while 0, < 7r/2. The size of the remaining subintervals are specified by requiring 1
all the subintervals to be symmetric about 0 = 7r/2. The size of the smallest

subinterval, h0 , is chosen to be 3
ho = 7-, 2.19

where k = [integer part of (3 + 6,a + 3q1)]. This adaptive procedure for choosing 1
the size and number of subintervals is simple to implement and keeps the relative
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I total error of the integration below 0.001% as long as a > 0.01. One can show that

T(gi, i) is bounded for all values of a and i if and only if & > 0 since 0 < q < 2 < 1

only for C -> 0.

3 The semi-infinite sheet of vorticity extends from -oo to the origin (Fig. 2.1).

Its axis defines the jet centerline, and the end of the sheet defines the jet exit. The

3 helical excitation used in the experiments of Lee and

Reynolds (1985b) is modeled by rotating the axis of the vortex cylinder about

5 the nominal jet centerline. The displacement, Ah, of the jet centerline from the

nominal centerline corresponds to the amplitude of excitation, and Ah = AhIR.

3 The rotation frequency is given by:
Ia 2.20
fh

I where
w 

fa = StaD , 
2.21

3 The frequency fa is the rate at which filaments are generated at the origin.

The interaction of the vortex sheet with the filaments is assumed to be such that

3 the sheet influences the motion of the filaments but the filaments do not influence

the sheet. The velocities induced by each filament and by the jet function are

superimposed to determine the trajectory of each filament. The sheet, however,

is constrained to remain cylindrical and is not moved by the filaments since the

3 cylindrical sheet corresponds to a mean flow whose centerline is determined solely

by the position of a physical nozzle.I
2.4 Algorithm

The numerical algorithm is a straightforward implementation of the concepts

3 discussed in the previous sections. A schematic of this algorithm is given in Fig. 2.2.

The excitation and time integration parameters are initialized, and the first filament

5 is created at 'he origin. Subsequent filaments are created as specified by the Strouhal

number.

I 1



The circulation of each filament is identical and is determined from circulation

conservation constraints. Assuming the thickness of the cylindrical sheet to be

much smaller than its radius, the vorticity flux (per unit of circumference) within

the sheet through any plane perpendicular to the jet's axis is given by U2 /2. By

the assumption of P perfect fluid, the vorticity convected from the cylindrical sheet

Tnu.it equal the vorticity convected by the discrete filaments. This conservation

relation can be expressed in terms of F and -y as

-_ 2.22

At 2

' here F is the circulation of each ring filament, -y is the circulation per unit length of I
tl'e cylindrical vortex sheet, and At is the time between generation of ring filaments.

IH' Eqns. 2.21 and 2.22, one obtains

-=Sta r. 2.23 1
aR'

At each time step the velocity at each node due to the combined effects of the jet 3
function and the vortex segments is calculated at the beginning and in the middle of

the time step. The velocities are computed from Eqns. 2.9 and 2.14. These velocities

are used by the second-order, Runge-Kutta method to determine the solution at

the next time step as follows

x - . + -t u), 2.24a

x x) + bt u*, 2.24b

where x] arid J denote a node's position and velocity at time tj, and 6t is the time

increment between time steps and is typically an order of magnitude smaller than

At. The new position of the cylindrical vortex sheet is determined on the basis of

the excitation amplitude and frequency -nd the time step.

To k,ep the aigcrithm simple and to eliminate the unknown effects of various

rIJrrrrical r,,fim'rIIents, the initial calculations constrained the vortex cores to remain 3
cor .,Mrit i tirric arnd did not incorporate any nodal redistribution. When filaments
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U are far apart, their interaction is essentially independent of a though their self-

induced velocity is not. The effect of varying a to satisfy Eqn. 2.8 is studied in the

imulti-filament shear layer discussed in Sec. 2.5.1.

* A program implementing this algorithm was written in Fortran for execution

on the Cray X-MP. By properly structuring the iterative loops in the code, the3 vectorization capabilities of the Cray are enabled. A complete listing of this code,

named BIJET, is given in Appendix B. Because of the nature of the mutual induc-

tion process, the cost of the simulation is proportional to the square of the number

of segments.

I
2.5 Refinements

Several refinements to the numerical scheme described in the earlier sections3 were developed and tested. These refinements were motivated by the desire to

understand the discrepancies between experimental results and the computational3 results described in the next section. Additionally, these refinements improve the

method in general and give indications of the errors resulting from various assump-

3 tions regarding the vortex filaments.

Three areas of refinement are described in this section. First, instead of simply

5 creating ring filaments to represent discrete vortex rings, the formation of the vor-

tex rings is simulated by discretizing the shear layer. Second, non-uniformities in3 vorticity distribution within a filament are considered by using multiple filaments

to represent each physical vortex ring. Finally, a numerical scheme based on cu-3 bic splines rather than linear segments is developed to improve the accuracy and

decrease the cost of the computation.

I Each of these refinements was developed and tested as independent problems.

In most cases the algorithms and results were brought to the point where they could

be implemented in the jet simulation code. However, these refinements were not so

implemented because the initial numerical work was adequate to answer most of the

key questions regarding the instability mechanism in bifurcating jets and because

I21



I

the objectives of this project dictated that a complementary experiment at high I
Reynolds numbers also be planned and executed. 3
2.5.1 Multi-filament shear layer

The axisymmetric shear layer issuing from a round jet is a continuous distribu- i
tion of vorticity. The instability of the shear layer amplifies even very small per-

turbations such that vorticity concentrates in discrete physical vortex rings. Axial

forcing can control this ring formation process. The numerical scheme previously

described approximates this process by periodically introducing a numerical ring U
filament a. the jet origin. However, since the formation process is not modeled, I
the initial size and location of a ring filament and the size of its core can only be

loosely approximated. To enhance our understanding of the effects of axial and I
helical forcing on a ring's formation, the scheme was modified to simulate shear

layer dynamics.

To model the evolution of a shear layer with a vortex method, one must use many

closely-spaced filaments. When the computational filaments are used to represent 3
discrete portions of the shear layer rather than discrete vortex rings, the effect of

the axial excitation can no longer be assumed. The numerical scheme must include 3
some means of simulating the axial forcing. This is achieved by pulsing the mean

flow by sinusoidally varying -1, such that

I(t) = [1 + Aa cos(27rfat)I/, 2.25

where j is the time-averaged circulation and Aa is the perturbation amplitude.

Correspondingly, the filaments also vary in circulation. 3
Three different ways of specifying the circulation, Fi, of each filament are used.

All of these methods are based on the circulation matching principle of Eqn. 2.22. 3
The first method, referred to as quadrature matching, uses the value of -y at the

instant filament i is generated to calculate ri.Thus, i

Fi = [1 + Aa cos(2rfat )I2At--, 2.26 3
2
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I where t. is the time when filament i is generated and At is the reciprocal of the

filament formation frequency. This method approximates ft't+ 1 y(t) dt by simple

quadrature.

The second method, integral matching, evaluates the integral exactly over the

time interval associated with the filament creation, such that

!2
Fi 1{l + LA -2 At + -a[sin(2rfati+) - sin(27rfatt)]

-2 + ) 7rfa

2 i2.27I __[sin(47rfti+ ) -sin(4rfats)]}2"

+8 7rfa -

The third method, growth matching, is identical to the second method in de-

termining r i but differs in the temporal assignment of that value. The first two

methods assign circulation r. to filament i at the instant of its creation. The third

method initially assigns zero circulation and increases the circulation by equal in-

crements over successive time steps. Filament i attains its final value of circulation

when filament i + 1 is created.

When simulating axisymmetric shear layers, the speed and accuracy of the

method can be significantly improved. Instead of using filaments made up of nu-

merous segments, one can use circular filaments. The exact solution for the velocity

field induced by these filaments can be solved analytically and was presented earlier5 in Sec. 2.2. With the circular filaments one only has to keep track of their radius

and streamwise location. The code AXLAYER, listed in Appendix B, is an imple-

3 menitation of this idea. When modeling a helically-excited shear layer, however, one

can no longer use these circular filaments since the filaments must be allowed to

* deform in three dimensions.

The significance of changes in core size due to vortex stretching was also consid-3 ered in the simulations of an axisymmetric jet. In one case the core sizes remained

constant in time. In the other case they varied in time according to Eqn. 2.8. These

changes in core sizes due to vortex stretching do not occur in two-dimensional flows.
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2.5.2 Multi-filament vortex ring I
It is not clear how a vortex ring forms when the shear layer is perturbed helically. 3

One might expect that the initial ring formation results in azimuthal variations in

the size of the vortex core. However, those asymmetries might be quickly smoothed 3
out by azimuthal flow within the vortex. This smoothing process has been proposed

by Moore and Saffman (1972). 3
If one were to use only a single filament with a spatial variation in core size, linear

impulse would not be conserved. Therefore, to model a vortex ring with a spatially

varying core size, one must modify Eqn. 2.6 to allow for flow within a filament or

use multiple filaments. In this work, multiple filaments having azimuthally uniform 3
cores are combined. The relative orientations of these filaments define the shape

and core characteristics of the vortex ring.

This multiple-filament approach was used to simulate the evolution of non-

uniform-core vortices. In one case, the evolution of a pair of rings initially positioned 3
side by side is considered. In the other case, a pair of eccentric rings are studied.

This configuration is similar to the arrangement of adjacent rings in the near-field I
region of a bifurcating jet.

2.5.3 Spline approximation

When representing a single arbitrary vortex filament by a set of linear segments, 3
one makes several approximations. The linear segments can only approximately rep-

resent the shape of the filament. Additionally, by using linear segments, one makes 3
an error in calculating the local induction of the filament. Local induction refers to

the velocity induced at a point on a filament as a result of the filament's curvature 3
near that point. From Eqn. 2.9, it is evident that every pair of adjacent linear

segments induces no velocity on the node between them. Errors in representing the 3
shape of the filament and in estimating the local induction decrease as the number

of segments becomes large. I
These approximations are improved by using a periodic cubic spline instead of

linear segments. A set of points on the filament defines the spline. Assuming unity
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I intervals, one obtains the system of equations

1 [il - 4fVl + fl- xi-I - 2xi + xi+l, 2.28

where xi denotes the spatial position of node i, fi is the second derivative with

respect to the parameter of the spline function, and i =1, 2, ... , N (number

of nodes per filament). The spline in turn defines the local derivative orj!49C in

Eqn. 2.6 to be fV where fV is given by

Il ,2.29

Thsexi+ - x i -- [6,I+ 1 + 2f'

This estimate of the local derivative is used with the trapezoid rule to solve Eqn. 2.6.

The implementation of this method is both straight forward and convenient.

The technique of LDU decomposition can be used to solve Eqn. 2.28, and if N

remains constant, the factorization needs to be performed only once. The method's

5 convenience becomes apparent when solving Eqn. 2.6 for a system of filaments.

Since the trapezoid rule is used, Eqn. 2.6 can be simplified to a single summation

over all the nodes. This simplifies the bookkeeping since one does not need to keep

track of neighboring nodes as in the multi-segment scheme (see Eqn. 2.9).

I For the same number of nodes, the spline approach does a better job of approxi-

mating the shape of an arbitrary filament than does the multi-segment scheme. The

spline method also includes the effect of the local induction rather than neglecting

it. The tradeoff is that the velocity induced by the spline must be calculated by

quadrature, whereas the induced velocity of linear segments is specified exactly by

Eqn. 2.9. This tradeoff is not a penalty since quadrature is computationally cheaper

than evaluating Eqn. 2.9. An example of the spline approach is provided by the

code SIVSPLINE, which calculates the self-induced velocity of a ring filament. This

code is included with the other program listings in Appendix B.

II
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I Chapter 3

NUMERICAL RESULTS

The computational portion of this work involved development of a new discrete-

vortex code, simulations of vortex interactions and bifurcating jets, and refinements

of the numerical scheme. The principles underlying this code were presented in the

previous chapter. Validation tests were performed to test the accuracy of differ-

ent portions of the program, and the results of these tests are given in Section

3.1. To test the code as a whole, some simple vortex interactions were simulated.

3 These interactions, described in Section 3.2, involved vortex pairing, collision, and

separation, and discrete axisymmetric shear layers.

3 The main results of the computational work are detailed in the remainder of

this chapter. Section 3.2 considers the momentum of a finite train of rings in an

3 attempt to estimate ring spacing and bifurcation angle in bifurcating jets. Section

3.4 presents the simulation of the bifurcating jet at different excitation amplitudes

I and frequencies. The other sectiori all deal with refinements to the basic numerical

approach and method. In Section 3.5, an axially-excited shear layer is modeled with

discrete vortex rings. In Section 3.6, multiple computational filaments are used to

represent vortex rings with non-uniform cores. Finally, Section 3.7 demonstrates

the significant improvements of the spline-based scheme over the standard linear-

interpolation approach.

All the simulations in this study were performed on the computer facilities at

NASA Ames Research Center. The code was developed on a VAX 11/780, and the

simulations were carried out on the Cray X-MP. Various graphics packages were

3 used to provide plots, slides, and movies of the results.

3 3.1 Validation of code

3 Since the entire program consists of entirely new code, some basic validation tests

were performed prior to simulating jet flows. These tests consisted of comparisons
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between computed and theoretical vortex ring velocity fields. These comparisons

provide a check of the code's main part, the subroutine that calculates induced

velocities. Additional tests concerned numerical parameters. Different numbers of

nodes were used to represent each vortex filament, and different time intervals were

considered.

Unlike a point vortex, a vortex ring has a self-induced velocity. This velocity

depends on the ratio of the core radius, a, to the ring radius, R, and on the vorticity

distribution within the core. For u/R < 1, the self-induced velc :ity, u8 , of a

filament with a finite, constant-vorticity core is (Lamb 1932)

us = r In--R - "]. 3.1

Vor a rirg with a Gaussian distribution of vorticity, the corresponding expression is 3
(Saffinan 1970)

u3 = - In 8 R -0.558]. 3.2

One can also evaluate the ring speed by evaluating Eqn. 2.12 at (f, 2) = (1,0).

The constant a in this expression is set to 0.413 to match the ring speed of a

Gaussian ring as specified by Eqn. 3.2. For u/R < 1, Eqns. 2.12 and 3.2 predict

ring speeds that are identical to three significant figures. The advantage of using

Eqn. 2.12 is that the actual vorticity distribution within the core is identical to the

computational filaments composed of multiple segments.

Figure 3.1 compares the self-induced velocity of a ring filament having varying 3
number of linear segments with the theoretical self-induced velocity of a circular fil-

ament. Since adjacent nodes define a segment on the periodic filament, the number 3
of nodes and segments are identical. The calculated self-induced velocity asymptot-

icalily approaches the theoretical velocity as the number of segments is increased. 3
Ideally, one would use a very large number of segments for the sake of accuracy.

However, because the cost of the calculation goes like the square of the number 3
of segments, a compromise must be made. For the bifurcating jet simulations, 32

nodes define each ring filament. With 32 nodes, the calculated self-induced velocity 3
is 21.57 lower than the theoretical value.
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I Another test to determine an adequate number of nodes is to compare the ve-

locity fields of a multi-segment ring with that of a circular filament. The velocity

field of the circular filament is given by Eqn. 2.12 and is presented in Fig. 3.2. The

velocity field of the multi-segment ring is very similar. The velocity field within

and around the filament core of a circular filament is presented in Fig. 3.3. The

fluid within the core appears to be in almost solid-body rotation. The velocity at

the core's center corresponds to the self-induced ring velocity. The peak velocity

I essentially defines the edge of the core. From this plot it is evident that the core

parameter a provides only a nominal value of the core radius. In this case a = 0.1

3 while the actual core radius is 0.04.

Along with the calculation of filament velocities, the velocity field of the jet

function was also tested. A cylindrical vortex sheet of infinite length and infinitesi-

mal thickness has uniform axial velocity within the sheet and zero velocity outside3 the sheet. Thus, one would expect the semi-infinite sheet depicted in Fig. 2.1 to

have similar characteristics for z < 0. The velocity profiles in Fig. 3.4 substantiate

I this expectation. Since the semi-infinite sheet has finite thickness, 20, there is also

a velocity gradient within the sheet (Fig. 3.5). In Fig. 3.5, the nominal radius of

3 the cylindrical sheet equals

The flow from a semi-infinite cylindrical vortex sheet (Fig. 3.6) is similar to3 that of an inviscid jet issuing from a hole in a wall. However, because of the finite

thickness of the sheet, there is some flow through the "wall" defined by Lz = 0

I and f > 1. The amount of flow through the wall decreases as the sheet thickness is

decreased. The velocity fields of vortex sheets of differing thicknesses are essentially

I identical except in the region of , = 0 and f = I (Fig. 3.7). If the vortex sheet were

defined to have zero thickness, there would be zero through-flow, but there would

I also be a singularity at 2 = 0 and f = 1.

I 3.2 Simulation of simple vortex interactions

I The previous section described checks of different components and parameters

of the code. The simple vortex interactions considered in this section provide a
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check of the code as a whole. All but the last case involve the interaction of only

two vortex rings. The simulation of these interactions are documented in the 16 I
mm, computer-generated film entitled "The Propagation and Interaction of Inviscid

Vortex Rings." Copies of this film are also available on VHS video tape.

In axisymmetric shear flows, vortex rings are often observed to combine to form

larger rings through a pairing process. One ring accelerates into the ring imme- 3
diately downstream from it and passes through it prior to merging with it. As

the rings near each other, the downstream ring increases in radius and slows down

while the upstream one decreases in radius and moves faster. In certain cases of

two impulsively started rings, the rings pass through each other a few times prior 3
to combining (Oshima & Kuwahara 1984). This is often referred to as leapfrogging.

This leapfrogging process is the first vortex interaction simulated. Two identi-

cal, concentric rings with thin cores are initially positioned one radius apart and

then allowed to propagate and interact. The rings leapfrog through each other 3
indefinitely, and their relative motion is exactly periodic.

The second test case involves two identical, concentric rings colliding with each 3
other. As they near each other, their velocities decrease. When they are very close,

they slow down tremendously while rapidly expanding in size. These features are

similar to those observed in the experiments of Oshima (1978). One could also

relate this simulation to a ring impinging on a wall. In this case the two rings i
would represent the physical ring and its image.

The third case focuses on two identical, concentric rings that move away from I
each other. This could represent a vortex ring moving away from a wall. The rings

initially shrink in size. Eventually, they move far enough apart that their mutually

induced velocities are small. At that point their propagation is essentially due only

to their self-induced velocities.

Finally, an unforced, axisymmetric shear layer is modeled by discrete vortex 3
filaments. Filaments are created periodically at the origin of the system such that

they are initially close to each other. The nominal core radius, 6, is 0.1. No regular 3
nor random perturbations are introduced, and the jet function is not used. The
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H growth and development of this discrete shear layer is presented in Fig. 3.8. The

3 small circular marker shows the origin of the system. Several diameters downstream

from the origin, the filaments bunch together to form, large, distinct structures.

3 This case provided a guide for choosing an adequately small time step. When the

time step is too large, a numerical instability results in the azimuthal variations

3 seen on certain rings in Fig. 3.9. These wiggles are completely removed by simply

reducing the time step, 6t, from 0.1 to 0.025, where 6t 6t F/R 2 . The value of 6t

used in the bifurcating jet simulations (Sec. 3.4) was typically less than 0.006.

3.3 Analysis of a finite train of rings

In this section the velocity field of a finite train of coaxial, equally-spaced vortex

rings is considered in an attempt to gain insights related to the ring spacing and

3 bifurcation angle of bifurcating jets. The positions of the rings are fixed in time, and

ali the analyses focus on the ring in the middle of the train of rings. The primary

3 parameter, 9, in this analysis is the distance between rings normalized by the radius

of the rings. The rings are represented by circular filaments whose velocity fields are

3 specified by Eqn. 2.12. The average flow quantities are obtained by trapezoid-rule

integration over the region, -/2 < 2 < 9/2.

3 The streamwise velocity induced by all the rings on the central ring is defined

as the convection velocity ai, where if = uR/F. From the definition of St,

USt- (uc/s)(2R) 3.3

I which can be simplified to

St = 2fi2. 3.4

The dependence of ii, on .9 for three different values of a is plotted in Fig. 3.10.

'The number of vortex rings, Nv, used in this calculation is 41. For 9 > 1, tic

asymptotically approaches the self-induced velocity of a single ring.

3 One can use calculations of tic to estimate the relative spacing of rings in the

bifurcating jet. In a bifurcating jet, the vortex passing frequency, fj of the large
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rings upstream of the bifurcation region is twice the frequency, fb, of the rings on

the jet's two branches. Thus, the ratio, R, of the distance between rings can be

estimated as follows:

R, 2 ucb. .£ s -- -3.5
Si uci

For a given 9j, this equation must be solved iteratively to determine the correct

value of 9b. For §j = 2.0, R, decreases from 1.71 to 1.60 as E increases from 0.10 to

0.50. For E = 0.1, R, increases from 1.64 to 1.78 as 9j increases from 1.60 to 2.40,

and for a = 0.3, R, increases from 1.57 to 1.71 as a3 increases from 1.60 to 2.40.

Thus, for a wide range of N1 and &, R, falls in the narrow range of 1.6 to 1.7. This

important result will be discussed further in Section 6.5.

The effect of the number of rings and the ring spacing on the instantaneous and

mean velocity profiles is presented in Figs. 3.11 and 3.12. The shapes of the profiles

are similar, but the velocity magnitudes are lower by a few percent for N, = 5

compared to those for N, = 41. For a given value of Nv, the velocity profiles are

essentially self-similar when plotted in terms of us/i.

If one assumes that the branches of the bifurcating jet behave as two independent

jets whose momentum fluxes approximately equal those of a finite train of rings

with the same ring sppcing, one can attempt to obtain a bifurcation angle from

a momentum balance. The axial momentum flux of a single branch is given by
< ff pu2 dA > cos(3/2), where p is the fluid's density, b is the velocity along the

branch, 8/2 is the angle between the jet's centerline and the axis of the branch, and

< > denotes a spatial average in the direction of the branch axis. For a constant-

density bifurcating jet, the resulting equation for the bifurcation angle, fl, is

= ( <ff)s 3.62 < ff UdA >

where u . is the axial velocity of the jet upstream of the bifurcation region. The

calculated axial momentum flux, F, corresponding to different values of § and C are

presented in Fig. 3.13, where F =< ff u2 dA > /r2 and u is the velocity component
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parallel to the axis of the train of rings. Using the jet exit conditions and Eqn. 2.23

and ignoring the increase in momentum flux due to axial forcing, one obtains

< f U2 dA >= 7rSt2 F2 . 3.7

By Eqns. 3.4, 3.6, and 3.7,

il
/3 2cos- (27rii (, )) 3.8

For all values of & and 9j considered, the argument of cos- 1 in Eqn. 3.8 is greater

than unity. This is true even if the numerato- in Eqn. 3.8 is replaced by F(&,9j).

Thus, while the analysis presented in this section can provide a useful estimate of

relative ring spacings in a bifurcating jet, it is inadequate to provide any insight

regarding the bifurcation angle. In spite of this inadequacy, the momentum analysis

has been included here for the sake of completeness and as additional justification

for the more complex approach presented in the next section.

3.4 Simulation of bifurcating jet

* The bifurcating jet simulations examine the effects of physical parameters as

well as modifications of the numerical model. The physical parameters are the

axial Strouhal number, Sta, and the helical excitation amplitude, Ah. To consider

the effects of the cylindrical vortex sheet, some simulations are run without the

sheet. Additionally, both helical and flapping excitations are considered. The helical

excitation is achieved by moving the cylindrical sheet in a circular orbit of radius

Ah about the nominal centerline of the jet. The flapping excitation is achieved

by moving the sheet sinusoidally back and forth along a line passing through the

nominal jet center. The half-length of that line is also referred to as Ah.

The code BIJET, listed in Appendix B, was used to simulate the bifurcating

jet. This code includes the jet function to model the source flow and discrete

vortex filaments to represent the vortex rings. Each vortex filament is composed
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of 32 piecewise, linear segments of vorticity. The nominal core radius, o, of each I

ring i ; J.1. This value was chosen based on an order-of-magnitude estimate of

the core sizes of the physical vortex rings. Variations of core size in the range

o0 0..3 -0-10 have little or no effect on the spreading angle of the bifurcating jet.

T he nominal thickness of the cylindrical vortex sheet is 0.2 times the ring radius.

The on-dimensional time step, 6t, is typically less than 0.006. Unless otherwise 1
specified, the cylindrical sheet is included, and a helical mode of excitation is used.

'TO SKrnuliate the bifurcating jet, the excitation frequency ratio, Rf, is exactly two in

ali cs.es. Twenty different cases were simulated, and the parameters corresponding

to t,- se caises are tabulated in Appendix C.

T'he initial positions of the filaments are staggered to correspond to the excita-

rion. O'-e might wonder whether the staggering is sufficient to produce a bifurcating 3
train of rings, or whether the source flow is required. Figure 3.14 compares two sirn-

'Qiatlons in which one has no source flow. Both vortex trains exhibit a bifurcation

pattern, but the one with the source flow has a bifurcation angle of 27' in contrast

to an angle of 16' for the other case. The bifurcation angle is determined by mea- 3
suring the angle between the centerlines of the two trains of rings. Each of the cases

noted in Table C.1 include the source flow.

It is irmpcrtant to note that the relative phase of the axial excitation is more

important than the exact type of transverse forcing. Whether the transverse forcing U
Prnploys a helical or flapping motion, the bifurcating jet is produced. However, the

relative phase between filament generation and helical excitation determines the I
diaretri."a! plane in which the jet bifurcates. If a flapping excitation is adopted and

if each new filament is generated when the cylindrical sheet has no displacement,

the jift behaves essertially as a natural jet.

T 1 lie thf' physical flow, large levels of excitation are required to produce bifur- I
cating jets 'n the smulation. Figure 3.15 compares two jets at the same Strouhal

F..u1ni,,er 0 - .3) and at different excitation levels (Ah = 0.1 and 0.5). At

.-, 0.1, the rin gs are eccentric, but the jet does not bifurcate at all. The tangle 3
, vr e) filarrients ' due to the interaction of two eccentric rings. At Ah = 0.5, the
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I jtt splits into two distinct jets. A similar comparison at Sta = 0.35 and Ah = 0.3

;tr.l 0.5 is given in Fig. 3.16. The jet at Ah = 0.3 is presented one axial excitation

period later tha the jet at Ah= 0.5. The jets appear very similar, and both exhibit

a bfrcation angle of 34' . The displacement of newly-created filaments from the

jet's nornina! center, marked by the small sphere, indicates the difference in Ah.

Apparently, one ran not increase the bifurcation angle by increasing Ah beyond 03

en St,, 0.35.

The jet response to different Strouhal numbers (0.25 < Sta < 0.50) and the

same excitaton amplitude (Ah = 0.5) was also considered. Figure 3.17 shows the

evolutn of a bifurcating jet at Sta = 0.3 over several excitation periods. Similar

results are presented for Sta = 0.40 in Fig. 3.18. End views of these two cases are

Sshown in Fig. 3.19. The results in Figs. 3.17-3.19 demonstrate that the simulation

captures the bifurcating jet's dominant features, the formation of two distinct jets

Ma.d the asvrnmetric spreading pattern. The simulations also predict an increase

f the bifurcation angle with Sta. The maximum bifurcation angle is obtained at

3 S5t- 0.42 (Fig. 3.20). The difference between the evolution of the rings farthest

downstrearm and the development of those upstream is due to the fact that the first

rings generated have no rings downstream of them to affect their trajectories. This

start-up condition was also seen in the experiments of Lee & Reynolds (1985b).

5 Figure 3.21 presents the jet bifurcation angle as a function of Strouhal number.

The (lashed lines in Fig. 3.21 denote a range in which bifurcating jets occur. At

Strouhal numbers below this range, the jets appear as slightly perturbed round

j ets. Above this range the jets exhibit spreading angles larger than those of natural3 Jets, but they do not have two distinct branches as the bifurcating jets within the

specified range. Within this range the bifurcation angle rises sharply with Sta. The

I implications of this behavior are examined in the comparison with experiments in

. 6.5 and in the discussion of mechanisms in Sec. 6.6.

The cause for this dependence of bifurcation angle on Sta can be understood

1,y on-idering the temporal onset of bifurcation at different Sta (Fig. 3.22). The

tr,,iJhal umber determines the spacing of the ring filaments. The filaments are
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relatively far apart at, St, - 0.3. At St, - 0.42, the filaments are so close that they I
barely avoid colliding with each other as they separate along different trajectories.

At St, L0.,43, the rings are too close to each other to be able to escape getting I
ernt angled with each other, and thus the jet does not bifurcate.

The romaining sections of this chapter present the results of various refinements i
to the numerical model and method. Although each refinement was tested on some

Sli:ple problems, thes rofi ernents have not yet been incorporated in the bifurcating

Jet code.

3.5 Roll-ulp of oxcite(l shear layer

The axial excitation in the bifurcating jet simulation presented in the previous

-!co1 is modeled by periodically creating ring filaments at the jet exit. This

..... . is, hafd on the fact that sinusoidally forcing an axisymmetric shear layer I
will produce regularly-spaced vortex rings. However, the actual formation of vortex

rings is not instantaneous, and this simple model has no means to account for the 3
effects of the axial and helical excitations on the formation process. The simulations

lescribed in this section allow us to examine the effect of axial forcing on the initial

roll-up of an axisymmetric shear layer into discrete vortex rings.

In the simulations described here, the shear layer is discretized into a single-layer

of close ly-spaced circular filaments. The filaments are generated at the jet exit at

regular intervals. As many as twenty filaments are generated per axial excitation 1
period. The axial excitation is modeled by sinusoidally varying the circulation per

uinit length, -f, of the cylindrical vortex sheet. This corresponds to periodically 3
varying the mean flow. The bunching up of circular filaments into a distinct group

corresponds to the formation of a discrete vortex ring.

The objective of thi particular simulation was not only to consider the effect

of axial forcing on ring formation but akso to investigate different approaches to I
rnatching Oe vorticity flux of the je function to that. of the filaments. The three

approaches (quadrature, integral, and growth matching) described in Sec. 2.5.1 have
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U been implemented, and their corresponding results are compared in this section. In

addition, the influence of the source flow generated by the jet function and the

importance of using image filaments are also considered.

Effect of source flow. The simulated initial roll-up of the unforced axisymmetric

shear layer is shown with and without the source flow in Fig. 3.23. The circular

marker shows the center of the jet exit. Note that the source flow causes the initial

trajectory of the filaments to be parallel to the jet axis, whereas without the source

3 flow the jet initially contracts. Hence, one could think of the source flow as a means

of satisfying the Kutta condition at the jet exit. It is important to realize that the

3 value of "y was not chosen to produce this parallel flow but was determined simply

on the basis of a vorticity conservation constraint, Eqn. 2.22.

3General effect of forcing. The initial evolution of an unforced axisymmetric

shear layer is compared with that of a forced layer in Fig. 3.24. The symbols denote

5 the positions of the filaments' cores. In the unforced case, the shear layer has rolled

up into a single large vortex structure composed of many filaments. In the excited

3 case, the filaments are grouped into two distinct groups. The existence of two

groups corresponds to the two periods of forcing that have been completed by this

point in the simulation. In these and the following cases, the filaments are initially

generated one core radius, a, downstream of the jet exit. Since the flow is assumed

I to remain axisymmetric, only the radial and streamwise position of each filament's

core is necessary to describe the position of the entire filament.

I Effect of vorticity-matching schemes. Since in the forced case -, varies in time,

the vortex filaments do not have the same circulation, ri.Three different methods

for calculating Fi were described in Sec. 2.5.1. The evolution of the axially-excited

shear layer as calculated by each method is presented in Fig. 3.25. Image filaments

are included, and the core sizes of all filaments are constant. In each case the shear

layer forms discrete bunches of vortex filaments as a result of the forcing. These

bunches correspond to the vortex structures seen in physical flows. The methods

differ noticeably in their prediction of the trajectories of the filaments. However,

the inital necking down of the jet and the positions of the centroids of the groups
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of filaments are very similar. Doubling the number of filaments created during each

excitation period produces no significant change in the initial necking down of the

jet nor in the locations of the vorticity centroids (Fig. 3.26).

Comparing Figs. 3.24b and 3.25a, one can see that the presence of image fila-

ments increases the initial necking down of the jet. This large initial contraction

of jet width (Fig. 3.25) is also seen in experiments with strong axial-forcing (Lee

& Reynolds 1985b). Nevertheless, it is not clear that it is better to include image

filaments since their inclusion would violate the Kutta condition in the unforced

case.

Pairing of vortex rings. To check whether the simulation can capture the pairing

of vortex rings, the evolution of the axially-forced jet is presented at the end of two,

three, and four excitation periods in Fig. 3.27. One group of filaments is formed

each excitation period. For example, at the end of two excitation periods, two

groups are seen in Fig. 3.27a. However, the number of groups present at the end of

each period depends on whether a pairing event has taken place. Pairing reduces

the number of groups by one. Thus, existence of only two groups at the end of

three excitation periods indicates that two groups have combined into one. Pairing

also doubles the distance between filament groups. This increase in length scale

corresponds to the subharmonic of the forcing frequency and is seen in Fig. 3.27c.

Effect of forcing amphtude. The effect of excitation amplitudes of 5% and 20%

are compared in Fig. 3.28. In each case the growth matching scheme is used and the

time corresponds to the end of two excitation periods. Forcing at Ah = 5% only

produces one distinct group of filaments in contrast to the two groups produced

at Ah = 20% (see also Fig. 3.27a). Thus, forcing at Ah = 5% is not sufficient to

control the formation of vortices from the shear layer. However, experiments in the

planar mixing layer show that forcing levels even below 1% are adequate to exercise

control over the vortex formation frequency (Ho & Huang 1982). This discrepancy

between computations and experiments suggests that the multi-filament simulation

underestimates the amplification of perturbations in the shear layer.
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Effect of temporal, core-size variations. In all the simulations previously de-

cribed, the core size of each filament is constant. However, in an inviscid flow

the core size should vary with the filament radius as specified in Eqn. 2.8. The

eff2ct of keeping the core size constant is not too significant in the bifurcating jet

'.imulation since the filaments are far apart. In the shear layer simulations, how-

ever, temporal variations in core size could be important. Figure 3.29 compares

the pathlines of the first filament in the forced-layer simulations for the two cases

of fixed and temporally-varying core size. The divergence of the two trajectories is

6.5% of the jet radius at the end of one excitation period. While one might expect

that this difference in the trajectory of a single filament would increase with time,

t is not clear whether the global features of the flow would also exhibit significant

d ifferences after a long time.

3.6 Rings with non-uniform cores

3Mechanism of formation. Helical as well as axial perturbations affect the evolu-

lion of a round jet. Thinking in terms of the discrete-filament model of the shear

j layer, one could imagine that a helical perturbation could produce a ring with az-

imuthai variations in core size. Figures 3.30 and 3.31 show different views of a

3 helically-excited jet at different phases of the excitation. The small circular marker

Shows the nominal center of the jet. If axial forcing with fa/fh = 2 were included,

3 the filarnents shown would form two vortex rings with non-uniform cores.

Interaction of non-uniform rings. To investigate the interaction of a pair of

rlngs with azimuthal core variations, simulations were made with pairs of rings,

each corposed of nine filaments. Each filament has a constant core radius, &, equal

to 0.1. Eight filaments are equally distributed about one central filament such that

th,)ir distance, 6, from the central filament varies linearly according to the following

re~lation:
6o+ A, if 0 < 0 < 7r; 3.9
60 4-(2 - ) A, ifr < <27r,
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where k is the azimuthal position in radians on the central filament and A is the

magnitude of the core variation.

The first simulation involves two rings side by side (Fig. 3.32). In case (a), the

fattest sections of the rings are adjacent to each other, but in case (b), the thinnest m

sections are closest. In both cases, bo/R = 0.1 and A/R = 0.2. As time progresses,

the core variations are smoothed out and then reverse in orientation. The spiral 1
shape of the filaments indicates the presence of azimuthal flow within the rings.

The second simulation involves the interaction of two eccentric rings with uni- 5
form and non-uniform cores (Fig. 3.33). The initial positions of these rings approx-

imate the relative positions of two adjacent rings upstream of the bifurcation region 5
in a bifurcating jet. If the largest sections of the rings are initially closest to each

other, the tilting of the rings does not appear to increase over that in the case of 3
,,,:form cores. However, if the smallest sections are initially nearest to each other,

the tilting effect is significantly enhanced over that for the uniform rings.

These results suggest that azimuthal variations of core size could affect the

angle at which a bifurcating jet spreads. The fact that these core variations were I
not included in the bifurcating jet simulation of Sec. 3.4 might partially explain

why the computations required larger excitation amplitudes and did not predict I
spreading angles as large as those seen in experiments (compare Figs. 1.3 and 3.21).

Whether the core variations would be smoothed out (see Fig. 3.22) before they could n

affect ring interactions in the bifurcating jet is not known. A jet simulation that

models the formation of the vortex rings and uses multiple filaments to represent

each ring would be required to answer this question. a
3.7 Improvement by spline approximation 5

The refinements presented in the previous two sections concerned the use of

filaments to model the jet. The refinement discussed here is an improvement in the

numerical description of the filaments. Instead of using piece-wise linear segments

to represent a filament, a periodic, cubic spline is used. To compare the accuracy of I
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these two representations. their predictions of ring speed are compared with theory.

Figure 3.34 shows the convergence of the calculated ring speed as a function of

number of nodes for both filament representations. The spline scheme achieves the

same accuracy as the linear scheme with just half the number of nodes.

Not only is the spline scheme more accurate, it also has several practical advan-

Itages over the linear scheme. First, the spline scheme enables the programmer to

construct much longer vectors in the time-intensive, iterative portions of the code.

3 T he longest vector with the linear scheme is the number of nodes per filament, but

with the spline scheme it is the total number of nodes in the simulation. This is an

5 advantage since supercomputers generally operate more efficiently with long vec-

tors. The ideal vector length depends on the memory architecture of the particular

3 computer. Second, the spline scheme allows one to perform nodal redistribution

more accurately and efficiently.

I Third and most importantly, the spline scheme is almost an order of magnitude

faster than the linear scheme. Since the cost of these calculations are proportiona!

to the square of the number of nodes and since the spline scheme requires half the

number of nodes for the same accuracy, the spline scheme is faster by a factor of

four. Since the number of operation counts for the spline scheme is half that of the

linear scheme, speed increases by an additional factor of two. These two factors

correspond to an eight-fold increase in speed. The additional cost savings due to

longer vectors will differ with the type of computer.

One could consider the spline scheme to be an improvement on the basis of a

5 purely physical argument. Depicting a vortex filament as a collection of connected

linear segments results in non-physical cusps at each node. But with the spline

3 scheme, one can specify the numerical filament to be smooth as is the physical

filament. Thus, the spline representation corresponds to a more physically-realistic

3 structure.

I
I
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3.8 Summary

This chapter has presented the results of vortex-filament simulations of simple

ring interactions and bifurcating jets and of refinements of the numerical model and

method. The most significant results pertain to the bifurcating jet. The simulations

demonstrate that the bifurcation of round jets is the Ltonsequence of the mutual

induction of eccentric rings and that the bifurcation angle increases with Strouhal

number. Another important result is that the numerical representation of a filament

by a periodic, cubic spline rather than by multiple straight segments provides an

order of magnitude decrease in computational cost for a given accuracy.

There are two major discrepancies between this simulation of the bifurcating

jet and the experiment of Lee & Reynolds (1985b). First, to achieve large spread-

ing angles, the simulation requires a helical excitation amplitude about ten times

larger than that of the experiment. Second, the maximum bifurcation angle of the

simulation was around 50' (at Sta = 0.42) compared to 800 (at Sta = 0.6) for

the experiment. These discrepancies can be attributed to the simulation's coarse

spatial resolution, underestimate of self-induced velocity, and inability to model the

initial amplification of disturbances in the shear layer.
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Chapter 4

3 EXPERIMENTAL APPARATUS AND APPROACH

* The objective of the experimental portion of this research is to test the concept of

bifurcation at high Reynolds numbers and to study the effects of various excitation

jparameters. Previous experimental work (Lee & Reynolds 1985b) and the com-

putational results described in the previous chapter demonstrate that dual-mode

I excitation can cause a round jet to bifurcate into two distinct jets. Those results

also point to an inviscid vortex interaction process as the primary mechanism caus-

I ing bifurcation. Thus, one would expect to be able to apply the concept successfully

to jets at Reynolds numbers higher than those of the previous experiment.

I However, the implementation of dual-mode forcing in high speed gaseous jets

does pose several previously unresolved questions. What is the best way to intro-

duce the dual-mode excitation at the high forcing frequencies required by high Re

flows? Will the low amplification rates associated with forcing at frequencies much

lower than the shear layer's initially most-amplified frequency inhibit the bifurca-

tion process? How does the required excitation amplitude increase with the jet

Reynolds number?

3To address these questions, a low-speed apparatus was designed and built. Air

served as the workin fluid Several different techniques for producing the axial

3and helical excitation were considered. The insights gained from this preliminary

investigation provided guidance for the design and fabrication of the high-speed

5 version of the bifurcating jet apparatus.

Since the primary objectives of this study concern global features of the jet, flow

5 visualization experiments were emphasized. With flow visualization, one can read-

ily identify different flow structures, uniquely capture the instantaneous behavior

3 of the entire flow, effectively determine the jet response to variations in excitation

parameters, and quickly test system modifications. The velocity and pressure mea-

3 surements quantify the initial conditions of the jet and the amplitude and phase of

the excitation.
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41 I I W-speeld jet apparatus

A ;cheniatic of the low-speed jet apparatus is shown in Fig. 4.1. Air is intro-

,!C,, into the outer annular section of the plenum through two 3.8-cm-diameter

i)*11,,s. This outer section is bounded by an 8" schedule-80 PVC pipe. The air

,I',, ]rouigl a *16-cm-)ong, 9.7-cra-diameter, porous, bronze cylinder into the

1!('r ,(vlitn(Irical sfction of the plenuri.

l'hi-, clinler, along with acoustic baffles in the outer annular section, effectively

.L,- ties t iim, r section from all but the lowest frequency upstream noise sources.

i I ba.Lffle coins;.ts of a ring-like Plexiglas insert that fits between the PVC pipe

!i,rolize cylinidcr. The inserts are lined on both flat surfaces with open-

7 1,114r acoustic d liping. Air flows through the baffles through several large

n, ii the inserts. This plenum design was used with good success by Kerschen

d fl( Johnston (1978), and its acoustic properties are documented by Roberts and

, 11, 1 ist.o)n (197.1).

The air is supplied by an ECG&G Rotron, 1/4-1I1 regenerative blower (model

01), which is connected to the plenum by a 6-m, 3.8-cm-diameter, flexible PVC

h,,s,. The air is filtered at the blower inlet. This blower provides a portable,

inde(pendent flow source that is ideally matched to the pressure and flow rate re-

quirerrents of the experiment. A series of gate valves regulates the amount of flow

and allows one to bleed some of the air for secondary uses.

A circular duct, made of 4" schedule 80 PVC pipe, directs the fluid from the

plfnnrnn into the nozzle. The inner diameter of this duct is also 9.7 cm. For additional

flow cori)fitioning, a honeycomb disk is mounted inside this duct. A i-mm-diameter

pressure tap in the pipe wall provides access for monitoring plenum pressure.

'hle nozzle was made" by cutting off the bottom and threaded ends of a clear,

tw(-litr, pl;tic -ofia bottle. The nozzle is cemented onto a Plexiglas coupling I
'hf ii Is rigidly moijnted to the circular duct. This simple nozzle has significant

;advarntac'*'s I addition to its low cost. Its clear walls allow visual access inside
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the nozzle, and its light weight makes it possible to excite the jet by physically

3 oscillating the nozzle. This type of excitation was anticipated but was not required.

Several different schemes for producing the helical and axial excitations were

3 explored. These schemes involved mechanical, acoustic, and fluidic devices. Each

scheme was tested, and one was chosen on the basis of success in producing bifurca-

tion, ease of implementation, and flexibility in varying excitation parameters. The

final version of the low-speed apparatus, shown in Fig. 4.1, incorporates an acoustic

3 excitation system. A 60-watt, Pioneer, 9-cm, full-range speaker is used to produce

the axial excitation. Four 120-watt, 15-cm, Morel woofers are flush mounted in a

3 70-cm by 70-cm particle board panel which is albo flush with the nozzle exit. The

woofers are positioned 900 apart, and their centers are located 11 cm from the jet

* centerline.

The Plexiglas coupling, shown in Fig. 4.1, also serves as a passage for smoke flow.

Smoke enters through four ports into an annular chamber and is injected tangential

to the core flow through a narrow annular slot. By injecting the smoke into the

nozzle boundary layer, one clearly marks the shear layer and vortical structures of

g the jet.

The jet apparatus is oriented vertically by a rigid steel frame. The jet exit sits

one meter above the floor. In all experiments, the jet is situated in a large room

(at least 10m x 20m x 7m) and positioned at least one meter from the nearest wall.

I
4.2 High-speed jet apparatusI

The low-speed apparatus was successfully used to produce bifurcating jets at

5 moderate Reynolds numbers. These results are detailed in the next chapter. This

success provided the motivation and guidance for designing another apparatus for

3 studying high-speed, high-Reynolds number air jets. A schematic of this apparatus

i shown in Fig. 4.2.

I
I
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The plenum design is identical to the low-speed apparatus except for the method 1
of bringing air into the plenum. Instead of two small-diameter pipes, one 9.7-cm-

diameter pipe is used. An 80 (included angle) diffuser connects this large diameter

pipe to the smaller diameter supply hose. The air is supplied by a 1-1/2-11P, EG&G

Rotrori regenerative blower (model 454). The air is filtered at the blower inlet.

Tiwo gate valves in parallel regulate the flow to the jet apparatus. The valves 3
,',Are arraiige(l to minimize system resonances. The blower is connected to the jet

app)aratus by a G-rn, 3.8-cm-diameter, flexible PVC hose. 3
A two-piece, 2-ca-diameter, anodized aluminum nozzle was designed and ma-

hi:ed for this high-speed jet apparatus. The nozzle profile is specified by a fifth- 3
,)rder polynomial with zero slope and curvature at inlet and exit. Tan-atichat

(1180) d(emorlwtrated that this profile, when compared to a matched-cubic profile,

hLazi smaller strearriwise velocity overshoot and smaller radially inward velocity at

the jet exit.. A nurnerically-controlled lathe provided the capability to match the 3
specified profile to within 0.05 mm. The area-contraction ratio is 25-to-1, and the

irigth-to-diarncter ratio is 5-to-1. 3
The upper and lower halves of the nozzle meet at the inflection point of the

profile. A thin annular slot is formed by these two halves. Smoke can be injected I
tangential to the main flow through this slot. This slot location was chosen since it

is a region of favorable pressure gradient. The slot is connected by an axisymmetric I
passage to a small annular plenum in the outer portion of the nozzle. Smoke enters

the nozzle assembly through four ports and is made azimuthally uniform by hon- I
cycorib in the annular plenum. A bottle of compressed air pr7.-ides the air source

for the injected smoke flow. This secondary air flow is regulated by a Matheson 5
single-stage regulator (model 1L346). The flow rate is controlled by a high-precision

needle valve connected to a Matheson rotameter (model 605).

The excitation source was chosen on the basis of estimations of the required exci- 3
,tion frequency and amplitude. From the definitions of the Reynolds and Strouhal

urmilrs, one can derive the following expression for the excitation frequency, f: 3
I/

f c -ReSt 4.112
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The work of Lee and Reynolds demonstrated that bifurcating jets occur in the

Strouhal number range of 0.4 to 0.7, based on the axial excitation frequency. Thus,

generating bifurcating jets in this apparatus at Reynolds numbers up to 100,000

3 would require excitation frequencies over 2 kLIz. Additionally, assuming that the

perturbation pressure amplitude scales linearly with the mean jet exit velocity, one

jcan conjecture from the low Reynolds number results that sound pressure levels of

around 130 dB would be required.

3 To achieve these high levels of excitation, compression drivers are used. These

high-power, high-efficiency acoustic drivers are frequently matched with horns as

I part of large sound systems. In this apparatus, one driver is attached to the plenum

a-s shown in Fig. 4.2. The other four drivers surround the plenum. Each driver is

connected to a 2-cm-diameter, 1.1-m-long, stainless steel, round tube. These tubes

act a-s wave guides which carry the acoustic wave from the compression drivers to

the acoustic passages in the nozzle assembly. Since shear layers are most susceptible

to acoustic excitation at the trailing edge, these passages are designed to focus the

acoustic signal at the jet exit. All five drivers are identical JBL 2485J, 120-watt,

compression drivers.

The entire apparatus is supported by a rigid steel frame which sits on heavy-

(Pity casters with leveling feet. This allows for easy transport and for adjusting the

apparatus to be horizontally level regardless of the flatness of the floor. A 70-cm by3 70-crn particle board panel surrounds the nozzle assembly and sits flush with the

jet exit. The jet is oriented vertically, and its exit is 1.2 m above the floor.

3 tBaffles made of particle board and Sonex standard, 7.6-cm-thick, acoustical foam

su1rround the jet on all four sides. This Sonex foam has an absorption ratio of one

3 down to 500 lHz. These baffles are located I m from the jet on each side. For visual

access into the test cell, one of the ba;ffles has a 46-cm by 61-cm rectangular opening

3 covered with a thin 'l'-xiglas sheet. One adjacent panel has a thin slit for passage

of a la:ser light sheet. Entrained air flows into the test cell through the 0.8-m gap

l),tW'fen tle baffles and the floor. The air discharges to a positively-vented exhaust

I
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hood located 1.3 mn above the jet. This hood is lined with 'llypalon'-coated Sonex

I foam. 3

4.3 Excitation system

The acoustic excitation consists of signals of two different modes and frequencies. 3
The axial mode is generated by either the acoustic driver in the jet plenum or by

the four external drivers. An approximate first-order helical mode is produced by 3
proper phasing of the sinusoidal signals routed to the four external drivers. The

signals of adjacent drivers are 900 out of phase, and those of opposite drivers are 3
180' out of phase. A transverse instead of a helical mode is produced when only

two opposite drivers are used. In the case of the bifurcating jet, the ratio, Rf, of 3
axial frequency, f0, to helical frequency, A is exactly two.

A function generator (Circuitmate FG2) produces the reference sinusoidal signal I
at the helical excitation frequency. A PAR 121 lock-in amplifier uses this reference

signal to generate a sinusoidal signal doubled in frequency. The reference signal 3
is also fed into a custom, two-channel phase shifter. The first channel shifts the

reference signal an arbitrary amount from 0' to 3600 relative to the frequency-

doubled signal. This phase shift corresponds to the relative phase between the

axial and helical signals. The second channel shifts the output of the first channel

an additional 90'. Sound measurements verify that the corresponding acoustic

signals are also 90' out of phase. The outputs of these channels provide the signals I
for two adjacent external drivers. The properly-phased signals for the other two

drivers are obtained by physically reversing the standard connection between these 1
drivers arid the amplifier or by electronically inverting the appropriate signals. The

frequency-doubled signal is the axial excitation signal. Both excitation frequencies I
will typically be discussed in terms of the corresponding Strouhal numbers Sta and

Sth, where St - faD/U and Sth fhD/U. I
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lhese low- level signal's are ainplified with a1(io amplifiers. A Pioneer A-60,

3100-watt,'channel, integrated ar!plifier is us((t with the low-speed apparatus. Ken-

wVO, M I (00-watt/c(hannel) arid Kenwood M2A (220-watt/channel) power am-

Spliiers and a Khiiwood ( 1 preamplifier are used with the high-speed apparatus.

Th' low-lvel illi d amplified signals are monitored with a multi-channel oscilloscope

( Iv atsu SS-570('), digital frequency counter (111' 5314A), and high-accuracy multi-

Ilieter ('luke 8.12A). When ,only the four external drivers are used to produce both

tlh axial and I"elicai siglials, the axial an( lical signals are electronically added

prio to amplificaLtion.

3 "l'ht relative phiase between the axial and helical signals is typically set so as to

pro luce the widest-spreading jet in the plane of the light sheet. Since faifh = 2,

5 one only needs to shift the helical signal from 0' to 180" to cover the fuil range of

relative phase angl,'s. Pha.se angles that differ by 90' correspond to mirror images

I of theilet. When tile light sheet coincides with the azimuthal piane containing two

opposite drivers, the maximnum spreading angle is obs.rved when the relative phase

of the axial and helical signals of either driver equals 470 ± 15' (at Re = 100,000).

'[lhe corr.spoioling phase angle at, Re -- 50,000 is 31' ± 15'. These phase angles

correspond to the approxiinate aligninerit of every other peak of the axial signa!

v, ith a peak of the helical signal.

3 4.4 Flow-visualization techniques

T"o mark the shear layer and vortex structures, smoke is injected into thae bound-

I ry layer in the nozzle. The sn,,ke is illuminated with either an electronic strobo-

scope ((;,riral Itadio 1531-A) or a 10-wati, (2 mJ/pulse at 5-klIz repetition rate),

I per-vapor, pul:,e, laewr (l'l a ina Kinetics 151). A single flash from the light

sIource proviles inst iantinolis picture,.s. lPliase-averaged pictures are obtained with

rniltiple, tflas, by triggering the light, source such that. ea(h flash occurs at the

sirt' phts-A, of the r,'# c, sig'nal. Th, strole elnables erie to visualize the entire

jet w , iic hic ,:,er iI IIIi1.iis oilly cros s-scctim. s of the flov. The ;Lscr pro(dilcesI
*1



the most detailed pictures not only because it is focused into a thin sheet but also

because it has an extremely short pulse duration (30 ns vs. 1.2 jis for the strobe).

Most photographs are taken with a Nikon FE2 35-mm camera with a Nikon 2.8,

i-rn, micro Nikkor lens. The f-stop is set to 2.8, and the shutter speed is varied

according to the desired number of laser pulses per exposure. For the instantaneous

pictuires at Re :- 50,000 and 100,000, a Nikon 1.4, 50-mm, Nikkor lens is used with

the f-stop ;et to t1. Kodacolor \RG (ASA 400) print film is significantly more

sensitive to the green laser light than is Ektachrome (ASA 400) slide film. Thus

slides are made from the prints rather than exposed directly. For black and white

Ti-'r either Kodak Tri-X (ASA 400) or Kodak TMAX (ASA 400) film is used.

K,Mk \AX film was found to be the best option. It provided excellent results

,ri- tveloped at ASA 800.

.A:, (:xternal triggering circuit designed by Eaton (1986) controls the repetition

e or ', copper-vapor laser. Since the laser is a very strong noise source, the trig-

gring circuit is optically coupled to the laser power supply. This circuit includes a

.(roiually-adlustable internal trigger as well as inputs for a remotely-enabled exter-

nal trigger.

For single instantaneous exposures, the laser repetition rate was set manually

at various values between 200 and 250 liz, and the camera shutter speed was set at

/250. Occasionally, portions of the film were not exposed since the camera is not

yncronized with the laser in this case. However, setting the repetition rate to 240

lz was found virtually to eliminate ths partial exposure problem. The appropriate

corlbination of repetition rate and shutter speed will vary with different cameras.

it. shoulo aiso ht, noted that this triggering scheme does not allow one to specify the

Phase of the 1aser pl.--e relative to the acoustic excitation.

1",r las e; wr rged pictures, the laser is triggered to fire at a particular phase of

he r(errcnce excitation signal. Zero-degrees phase corresponds to the peak of the

re(,r(r* : (ienal. A pukle synchronization circuit converts the reference sinusoidal

,ir;c into a pulse arid phs;e shifts that pulse from 00 to 3600 as specified by the

'h. is pLe s ivcs as the external trigger for the Eaton triggering circuit.
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The triggering circuit is connected to the camera's autodrive (Nikon MD-12) such

3 that the laser operates at the excitation frequency only when the camera shutter

is enabled. At all other times the laser operates at its normal operating rate of 6

3 kIIz. The triggering system is sketched in Fig. 4.12, and the corresponding timing

diagram is given in Fig. ,.13. The number of laser flashes per exposure, F, is

3 deternined by the repetiti-n rate and the camera shutter speed.

Visualizing an excited jet at successive phases of excitation is similar, thought

3 not usually identical, to watching the time evolution of the jet. The two visual-

izations are identical only if the pictures at successive phases are taken within one

3T period of the excitation. Referencing the flow pictures to the excitation phase allows

one to determine the phase relationship between excitation and vortex formation.

IBecause of the manner in which the laser is triggered, the phase of the excitation

ait w+.ich ¢ he laser flashes is only known for phase-averaged visualizations. The

I -Ahame corresponding to instantaneous pictures can be estimated by comparing the

instantaneous pictures with the phase-averaged pictures.

One can estimate the frequency associated with vortex structures from mea-

surements of the distance between them. Let I represent the streamwise distance

between the centers of the cores of two adjacent, fully-developed vortices. Let U be

the local mean centerline velocity at z, and let Ere be thz time-averaged centerline

voiocity at the jet exit. By approximating the vortex propagation speed by U/2,5I one obtains the following approximation for the vortex passage frequency, f,:

U
- 4.2

Frorm the definition of St and the approximation U - Ue, which is valid near the

3 jet exit, one obtains
D

21

0
,t " - 4.A

I
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where StD is characteristic of the forcing and St0 is characteristic of the jet's initial

instability. From the definitions of StD and Sto, the ratio of the natural frequency,

f, to the forcing frequency, fa, can be expressed as

fn _ StoD 45

fa StDO

These equations are used in Ch. 5 to estimate from pictures the natural frequency

of the shear layer.

Since the laser resides in an adjacent laboratory, a set of mirrors (Newport

20D20BD.1) and lenses are used to focus the beam into a thin sheet and to direct

it into the test cell. A 2-m-focal-length, convex spherical lens (Melles-Griot 01

LDX 263/078) and a 200-mm-focal-length, concave spherical lens (Newport KPC

070AR.14) focus the beam while a 150-mm-focal-length, concave cylindrical lens

(Melles-Griot 01 LCN 008/078) expands the beam in one plane. By changing the

distance between the two spherical lenses, one can position the thinnest portion

of the light sheet at the jet exit. This setup provides a light sheet that is less

than 1-nm-i thick at the jet exit. A 5.1-cm laser window (Newport 20QB20XR.14)

in the laboratory wall provides isolation between the two rooms. All mirrors are

99% reflective, and the lenses and window are 99% transmissive at the operating

wavelengths.

The strobe is used with a VHS video camcorder (Panasonic PV-200D) primar-

ily for preliminary studies and setup. The strobe frequency is manually set at a

submultiple of the excitation frequency. When the strobe frequency is an exact sub-

multiple, the flow structures are seen to sit motionless in space. Slight deviations

from exact submultiples provide a sense of motion.

Several different smoke sources, including incense, cigarettes, cigars, vaporized

mineral oil, and titanium tetrachloride (TiCI4), were considered. The titanium

dioxide (TiO2) smoke, which is formed from TiCl4, scatters the most light but

is also hardest to handle since hydrochloric acid is a by-product of the formation

process. Neither the incense nor the mineral oil produced an adequately dense

smoke. Tobacco smoke provided the best compromise between ease of handling and
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-- amount of light scattering. Cigars are used instead of cigarettes since they burn

3" much longer.

The smoke generation system consists of cigars (Phillies Titan), Pyrex flasks,

5 and an air source. In the low-speed apparatus bypass air from the blower provides

the necessary air. In the other apparatus the air is obtained from a compressed air

-3 cylinder, and the flow rate was maintained at 2% of the jet flow rate. This flow

rate was chosen since the ratio of the injection-slot area to the nozzle cross-sectional

area at the injection location is approximately 2%. The air is forced through the

cigars burning in the flasks, and the cigars were found to burn most effectively if

3 two small holes were made in the skin of each cigar near its unlit end.

The outlet ports of the flasks are connected to a mixing chamber. This chamber

I is in turn connected to each inlet port on the nozzle assembly through over two

meters of copper and Tygon tubing. This long length of tubing allows the smoke

I flow to cool prior to entering the nozzle. The amount of smoke can be varied by

varying the flow rate and/or the number of cigars. Four cigars were used in the

I high-speed experiments. The nozzle surface was cleaned regularly, and the room

humidity was kept low to prevent the cigar smoke from leaving deposits on the

I nozzle's surface.

4.5 Velocity and pressure measurements

I Both velocity and pressure measurements were made to document the jet initial

conditions and thie excitation signals. The time-averaged, centerline velocity at

the jet exit was calculated from the plenum pressure, which was measured with

a high-accuracy (±0.005 in. H20), Meriam manometer (model 34FB2). A hot-

wire anemometry system measured the streamwise velocity profiles, and a small

copdenser microphone positioned at the jet exit measured the level and phase of the

acoustic excitation. Since the purpose of the acoustic measurement is to quantify the

3 imposed perturbation and not to measure the jet noise, all acoustic measurements

were made with no flow. It is assumed that for a fixed input signal to the excitation
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system, the imposed perturbation is the same whether the flow is on or off. A

theoretical argument for making acoustic measurements with no flow as a means of

quantifying the acoustic excitation of a shear layer is given by Bechert (1988).

The hot-wire system consists of standard Dantec components. A 5-ism-diameter, 3
platinum-coated tungsten wire with gold-plated ends is mounted on a straight probe

(model 55P'01) supported by a right-angle probe holder (model 55H22). The probe is 3
connected to a miultipurpose bridge (module 56C16) and signal conditioner (module

56N20). A two-dimensional, manually-actuated traverse moves the probe in a plane

parallel to the jet's axis. A high-accaracy dial indicator enables setting the probe

position tc within 0.025 mm of a desired value. 3
A dedicated AT-type, 10-Mhz microcomputer (AST Premium 286) handled the

data acquisition and processing. The data was acquired with a Data Translation 3
analog-to-digital converter (model 2821-16SE-F) and stored directly in extended

memory or on a 70-Mb MiniScribe hard disk. With this configuration single-channel 5
data could be continuously acquired and stored at rates up to 130 kHz to memory

and 50 kHz to disk. U
All 'linearization' and temperature compensation of the hot-wire data was done

in softwre. Calibration data were obta with the hot-wire probe positioned at

the center of the jet exit and were fit to the King's Law:

E 2 = E + Ku n, 4.6

where .;s the bridge outp,,t voltage and u is the streamwise velocity. The coef- i
ficients E0 anid h and the exponent n were optimized to minimize the error. The

temperature rom ;ensation used is that due to Bearman (1971):

E , \ T, T ) 4.7

where T,, is the wire temperatur-, T is the ambient temperature, and the reference

state is that a. calibration.

A 0.G-cmri-diarmter condenser microphone (Bruel & Kjaer 4136) was positioned i
onf? nozzle diaminwr- (20 mm) from the jet exit and half a diameter (10 mm) from
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the jet centerline. The microphone was oriented perpendicular to the jet's axis

and pointed toward the jet centerline. In the azimuthal direction, the microphone

was lined up with one of the wave guides. The microphone was connected to a

preamplifier (Bruel & Kjaer 2619) which in turn was connected to a heterodyne an-

alyzer (Bruel & Kjaer 2010). This analyzer was simply used to provide an accurate

measurement of the sound pressure level (SPL), where

SPL = 20log10 (2 ). 4.8

U The analyzer was set for a linear frequency response, and all pressure measurements

are referenced to Pref = 2 x 10- 5 Pa.

1 !t a g.ven frequency, doubling the amplitude of the excitation signal should, in

theory, result in a 6 dB increase in the measured SPL. The deviation from theory

was within ±0.1 dB in the axial mode but was as high as ±1 dB in the helical

mode. From day to day, the measurement of the axial perturbation w.s repeatable

to within 2% of the measured pressure fluctuation. At z/D = 1, the difference

3 between the pressure fluctuations at r/D = 0 and r/D = 0.5 was also within 2% of

the measured fluctuation. Measurements of the helical perturbation were repeatable

5 to within 3% at high excitation amplitudes but deviated by as much as 25% at the

lowest excitation amplitudes.

5 Calibration curves of rms pressure fluctuation, p', measured at z/D = 1 and

r/D = 0.5, versus electrical signal amplitude were established at each frequency

3 of interest for both the axial and helical modes. Each curve was essentially linear.

During flow-visualization and hot-wire experiments, the electrical signal amplitudes

5 are measured to within 0.5% of their actual value. The corresponding pressure

fluctuations are calculated from the calibration curves and are reported in terms of

the non-dimensional quantity p, where p = pl/(IPU2 ). The velocity fluctuation at

the jet exit increases linearly with the axisymmetric pressure fluctuation, p'. The

3 strearrwise velocity fluctuations corresponding to different values of Pa are presented

in Fig. 4.3.
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Chapter 5

3 EXPERIMENTAL RESULTS

I The experimental methods and approach described in the previous chapter were

applied to four different types of jet flows. The first is a natural jet. This unexcited

I ,jet provides a base case for the three other flows which all involve some type of

excitation. Second, axially-excited jets are considered. Our study of these flows

I enhances our understanding of the effects of amplitude and phase on the control of

the vortex formation process. The third type of jet is excited only by a first-order

azimuthal mode. Since the bifurcating jet is generated by a combination of axial

and helical excitation, it is instructive to consider the effect of the helical excitation

alone. Finally, the main subject of this report, the bifurcating jet, is examined.

The range of parameters considered in this work both extends and parallels

the range of parameters considered by Lee and Reynolds (1985b). They focused

primarily on jets at a Reynolds number of 4300. This work investigates jets in

the 10,000 to 100,000 range. The low-speed apparatus is used for Re < 20, 000,

while the high-speed apparatus is used for all higher Reynolds numbers flows. The

axial and helical excitation amplitudes used by Lee and Reynolds were fixed at

u'/U = 17% and b/D = 4%, where 6 represents the displacement of the nozzle tip.

The range of amplitudes examined here cover several orders of magnitude. Since

*the experiments of Lee and Reynolds indicated that the bifurcation phenomenon

occurs only for 0.40 < St < 0.65, the same range is considered here. The key

3 dimensionless and corresponding physical parameters are compared in Table C.2.

5.1 Natural jet

3 All the jets considered here are round, turbulent, free jets with initially thin shear

layers. The natural jets are characterized in terms of Reynolds number, shear layer

3 thickness, exit velocity profile, and exit centerline turbulence level. The Reynolds

rlumber Re is based on the time-averaged, centerline exit velocity, U, and nozzle
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diameter, D. The shear layer thickness is specified in terms of the vorticity thickness

6 , where 6, - Unma,,/(du/dy)m,,. The turbulence level is defined as u'/U, where

u1 is the root-mean-square of the fluctuating strearnwise velocity. Measurements

of the initial conditions of the natural jet were provided by Mr. Philippe Juvet for

the high-speed jet and by Mr. Robert Koch for the low-speed jet. The initial shear

layer appeared to be laminar in all cases, and the physical parameters of all the

cases are summarized in Table C.3.

The low-speed facility was used to study jets at Reynolds numbers of 10,000 and

20,000. The centerline turbulence level at z/D = 0.1 is 1.3% at Re = 10,000 and

C,6 '% at Re = 20. 000. The mean and fluctuating velocity profiles at Re = 10,000

are presente2 in .iig. 5.1. The corresponding vorticity thickness is approximately

1. ,mm (6/R - 0.12).

Tie high-speed jet facility was used to study jets at Reynolds numbers of 25,000,

50.000. .nd 100,000. The corresponding centerline turbulence intensities are 0.5%,

0.3%'. and 0.2% (at z1D = 0.05). The mean and fluctuating velocity profiles of these

Jets at z/D = 0.05 are presented in Figs. 5.2-5.4. In each case the velocity profiles

are top- hat in shape. The shear layer profiles of these cases are compart in Fig. 5.5.

The vorticity thickness decreases with increasing Reynolds number from 0.43 mm

(6,i/R = 0.043) at Re = 25,000 to 0.25 mm (6,/R = 0.025) at Re = 50,000 to 0.18

mm (6/R = 0.018) at Re = 100,000.

In al! the cases studied in the high-speed facility, the flow rate of the injected air

was two percent of the total flow rate. Figures 5.6 and 5.7 compare velocity profiles

with and without air injection through the smoke slots. Note that the shape and

size of the shear layer is not altered by the blowing. In the low-speed facility, the

smoke flow was adjusted until it appeared to have no significant effect on the jet

but wa.> not separately metered.

lnstantanorxs cross-sections of unexcited jets at Reynolds numbers of 50,000

and 10.f,00X are displayed in Figs. 5.8 and 5.9. In both cases the shear layers are

rit i,1i!v laminar bijt undergo transition to turbulent layers within one jtt diameter.
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The process of transition consists of the formation of very small vortex rings fol-

lowed by one stage of vortex ring merging and the subsequent breakdown of those

rings into turbulent puffs. The vortex merging occurs asynunetrically. In one case

3 (Fig. 5.8), two vortex cores are seen merging on the left side while apparently three

are combining on the right side at the same downstream location (z/D = 0.7). This

3 indicates that different azimuthal sections of a vortex ring do not always behave

the same. It is also evident from this picture that the smoke interface between the

5 jet core fluid and the ambient fluid sometimes disappears between adjacent vortex

cores. This observation suggests that the ring formation and merging processes

3 locally stretch the shear layer so strongly that it is torn.

Using Eqn. 4.4 to estimate the initial vortex formation frequency from Fig. 5.8

Iand using the approximation 0 f- &/4 to determine 0 (see Monkewitz & Huerre

1982), one obtains St0 = 0.014. This is fairly close to the shear layer's initial most

amplified frequency, which is typically taken to be St0 = 0.017 (Ho & Huerre 1984).

Since Eqn. 4.4 is merely an approximation and since background disturbances can

cause the observed most-amplified frequency to differ from the theoretical one, it

is not surprising that these two values are slightly different. The fact that the

estimate is as close as it is to the actual value indicates that this 'back-of-the-

envelope' analysis can be useful. Substituting St0 = 0.014 and StD = 0.55 into

Fqn. 4.5, one notes that typical forcing frequencies are about eight times lower in

freqiency than the initial vortex formation frequency. Thus, the ampliication rate

corresponding to the forcing frequency is at least an order of magnitude lower than

the maximum amplification rate (Michalke & Hermann 1982).

Another striking feature of these natural jets are their strong three dimension-

5 ality. The smoke boundaries on both the interior and exterior surfaces of the shear

iayr are very ragged. In general, the shear layer spreads more rapidly on its ex-

I terior side. Beyond z/D = 1, large-scale structures are not clearly evident though

ti v are siuggested by various patterns in the shear layer. Two large blobs of smoke

3 -" i,1) 2) and 3 are apparent on tie left side of the jet (Fig. 5.8). In the other jet

Ki. 7i: ), two blobs of smoke are seen on the right side at z/D =6 and 8. It is not

I
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surprising that the distance between these blobs is much larger than that between

the other pair of blobs since these structures are much farther downstream. One

would expect the largest length scales to increase with downstream location. Be-

tween these two blobs is a thick strand-like structure reminiscent of the vortex sheet 3
connecting adjacent rollers in a plane mixing layer. In some instances (Fig. 5.10),

the potential core wanders left and right as a meandering river. It will be shown in

Sec. 5.3 that this zig-zag pattern is a signature of the first-order helical instability

in jet flows. 3
Multiple-exposure cross-sections of natural jets at Reynolds numbers of 50,000

and 100,000 are pictured in Figs. 5.11 and 5.12. The raggedness of the shear layer I
is smoothed away by the 'averaging' achieved by the multiple exposures. Small

vortices are still somewhat visible in the near field. Comparing Figs. 5.11 and 5.12, I
one can see that increasing the Reynolds number results in an earlier transition to

turbulence and an apparently longer potential core. In both cases the jet appears I
fairly symmetric about its centerline. As was seen in the instantaneous pictures,

the length of the potential core increases with Reynolds number while the length of I
the laminar portion of the shear layer decreases. One would not expect the helical

instability to be distinct in multiple-exposure pictures since the jet does not always I
succumb to that instability and since the zig-zag pattern could take any azimuthal

orientation. The contrast between the instantaneous and multiple-exposure views

clearly demonstrates the impcrtance of having both views to get an accurate concept

of the features of a flow.

Multiple-exposure pictures at Re = 25,000 reveal many of the same features 3
of the higher Reynolds number jets. Laminar and turbulent vortical structures of

differing scales and asymmetric ring merging are evident in Figs. 5.13 and 5.14. 3
Since only four exposures are combined in these pictures, many of the fine details

remain. 3

0
!
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5.2 Axially-excited jet

1 By imposing a single-frequency, axial excitation, one can control the frequency

at which the shear layer rolls up into distinct vortex rings. As a result, phase-

averaged pictures can capture these structures. This section illustrates the effects

3 of differing excitation amplitudes and present the phase evolution of the vortex

structures. Additionally, the internal and external means of introducing the axial

excitation are compared. Unless otherwise stated, the axial excitation is introduced

internally by the acoustic driver in the plenum at Re = 10,000 and 20,000 and is3 generated by the external drivers at the higher Reynolds numbers. In most cases,

the Strouhal number, Sta, given by ,faD/U, equals 0.55.

3 One example of the differences between natural and axially-excited jets at Re

10,000 is depicted by the instantaneous strobe pictures in Fig. 5.15. The shear layer

* and initial vortices in the natural jet remain laminar for a much longer distance than

those in the higher Reynolds number jets. The axial excitation causes the shear

3 layer to start to roll up sooner and results in the vortices being larger and more

regularly arranged. The mushroom-shaped structure at z/D = 5 is the consequence

3 of one ring being pulled through and wrapped around another ring.

Instantaneous cross-sections through the center of the jet show interesting dif-

3ferences in jet response to pa. At low levels of streamwise forcing, one controls the

vortex formation frequency by causing a periodic collective interaction of the thin

3 closely-spaced rings near the jet exit. The axially-pulsed jet at Re = 20,000 and

Pa = 1.6% is an example of this (Fig. 5.16). The thin rings form independently of

I the forcing while the large rings form because of the forcing. Looking at the larger

vortex structure at z/D = 3, one can note differences in the shape of the jet core

around this structure. Upstream of the structure, the core's two sides are convex.

Downstream of the structure, the core looks like an arrowhead. The oblong mass

of vortical fluid at the tip of this 'arrowhead' is the result of a vortex merging.

3 At higher levels (Pa = 12%), the thin vortex rings are no longer visible, and

instead, one sees the initial formation of rings whose spacing is on the order of the3 jet diameter (Fig. 5.17). The stronger excitation causes a tight roll-up of the shear
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layer and the formation of very large laminar rings. The structure of the vortex

cores shows many interfaces between the jet fluid and the entrained fluid. Several 3
diameters from the exit, a vortex ring exhibits severe deformation and elongation

due to the pairing process. As pairing occurs, the core of the upstream vortex ring 3
changes froni a circular to an oblong structure.

li.stantai-teous pictures at different phases of excitation at Re = 10,000 are pre- U
senred in Fig. S.I. The pictures are arranged in successive phases of the initial

roil-tip of the shear layer. From these pictures one can see that a vortex ring grows I
hV , rapp ing more and more of the shear layer around itself as it propagates down-

sPalrm. Eventuaily, the roll-up process stops, and consequently the independent

grv"Lu" of the vortex structure does also. Further growth is no longer achieved by

a Jiti.aai roll up of the shear layer but by the amalgamation of vortex rings. In

C erltin iistarlces as many as five vortex rings remain distinctly visible and orga- I
nized a. one tim (Fig. 5.18d). This contrasts sharply with the natural jet seen in

Fig, 5.15,

Phase-averaged pictures of a jet at Re = 100,000 and at phase intervals of 90' are

presented in Fig. 5.19. Since the laser is triggered by the excitation signal, the fact 3
that the positions of the rings remains the same over 17 exposures demonstrates that

the large rings are being formed at the forcing frequency. In both the instantaneous

and phase-averaged pictures (Figs. 5.17-5.19), the spacing between adjacent, fully-

developed vortex rings that are not pairing is about one diameter. These two cases

differ in, Re by a factor of ten but are identical in St, and hence, the spacing between

riugs ;s essentially identical. 3
"I'hP effects of amplitude variations seen at the lower Reynolds numbers are also

seen at the higher Reynolds numbers. Instantaneous pictures of axially-excited jets 3
at Re 70 000 end 100,000 are shown in Figs. 5.20 and 5.21. In both cases one sees

var y !;! ;ces of vortex structures that are very distinct from each other. The axial 3
Fx ita'I)n is effective in generating the desired large vortices. Since the amplitude

is a fkctor of 4 hi16ghr in the Re = 100,000 case, the vortex rings in that jet are 3
'0014 h inorc distirnct and organized. The pronounced circular void of vortical fluid
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in the large vortex ring is the consequence of ambient fluid being engulfed during a

* pairing event.

Several cases with different amplitudes at Re = 50,000 are compared in Fig. 5.22.

The large vortex structures become -nore distinct as the amplitude is increased,

however, the formation of the small, initial vortex rings appears unaffected except

3 at the ve. y highest amplitude. The highest amplitude is a factor of 9 greater than

the lowest one. In Fig. 5.22d, the helical instability is present downstream of the

* potential core.

The same cases considered in Fig. 5.22 are visualized by the phase-averaged

I technique in Fig. 5.23. It is important to remember that while the phase-averaged

pictures all correspond to the same phase of excitation, the instantaneous pictures

do not. As in the instantaneous pictures (Fig. 5.22), the vortex cores in the phase-

averaged pictures (Fig. 5.23) become more distinct as the amplitude is increased.

The vortex cores form a staggered array as the amplitude is increased. This would be

expected of a helically-excited jet but not of an axially-excited jet. The explanation

for this phenomenon is not clear, though one might conjecture that energy is being

transferred from the axial to the helical instability.

A comparison of axially-excited jets at Re = 100,000 and at different amplitudes

5 is provided by the instantaneous visualizations in Fig. 5.24. The excitation at the

two lowest amplitudes appears to have little or no effect on the shear layer. The

excitation at the highest amplitudes is quite sufficient to generate distinct vortex

rings. At the very highest amplitude, the eye of the vortex is completely clear of

vortical fluid. The deformation of a vortex ring due to pairing is also evident in

Fig. 5.24d.

The corresponding phase-averaged pictures are given in Fig. 5.25. From these

pictures, one can see that even the low amplitude excitations do alter the structure

3 of the shear layer in a fashion characteristic of the excitation frequency. Comparing

Figs. 5.23 and 5.25 demonstrates that the same absolute level of forcing does not

produce the same effect at these two different Reynolds numbers.

I
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In Fig. 5.25d, the cores of the vortices are still quite clear in spite of averaging

over 17 exposures. The fact that two different scales of structures remain distinct 3
and localized indicates that the smaller structure corresponds to the first harmonic

of the frequency characteristic of the larger structures. The vortices correspondilig

to the forcing frequency are the result of at least two stages of vortex coalescence.

A close-up of an axially-excited jet at Re = 25,000 is given in Fig. 5.26. Since 3
only four exposures were taken, this phase-averaged picture appears much like in-

stantaneous pictures. The large, turbulent rings are fixed in space, but the small 3
laminar ones are not. Thus, the large structures do not correspond to an exact

subharmonic of the small structures. Multiple rings combine to form the large 3
structures by a 'collective interaction' process like that described by Ho and Huang

(1982). The effects of different amplitudes are compared in Fig. 5.27. The highest

amplitude considered is sufficient to bypass the collective interaction process and

produce the large structures directly. I
A comparison of excited jets at different Sta but the same excitation amplitude

is presented in Fig. 5.28. Figure 5.28a corresponds to Sta = 0.55. The Strouhal

numbers of Figs. 5.28b and 5.28c are slightly higher at 0.60 and 0.65. These small

variations in Sta result in noticeable changes in the spacing of the vortex structures.

As one would expect, the rings are closer at higher Sta.

In the high-Reynolds-number facility, when the axial excitation is produced by

the internal acoustic driver, increasing the excitation amplitude can cause separa- 3
tion of the boundary layer la the nozzle (Fig. 5.29). When the separation occurs,

the smoke issuing from the nozzle is no longer only a thin laminar stream but is 3
also a large turbulent structure. The separation appears to occur periodically. Ad-

ditionally, the boundary layer of the flow at Re = 100,000 is more robust and does 3
not separate until much higher levels of forcing. When the axial perturbation is

produced by the external drivers, no separation is observed. 3
Though the separation is linked to certain levels of forcing from the internal

driver, its exact cause is not known. It is possible Lhat the shear layer formed 3

64 I



I
I

inside the nozzle by the main and injected flows is adversely affected by the acous-

tic forcing. Another plausible explanation is that the compression driver produce;

vortex rings that propagate through the plenum and interact with the nozzle bound-

ary layer. No production of vortex structures away from the plenum walls would

be expected in the low-speed apparatus since the speaker is a conventional conical-

3 diaphragm loudspeaker whose diameter is approximately equal to the plenum diam-

eter. in the high-speed apparatus, however, the acoustic signal leaves the compres-

5 ',ion driver through a 5-cm-diameter opening which is coupled to the 10-cm-diameter

plenum by a wide-angle conical diffuser.

I A jet at Re = 100,000 was excited by both internal and external axial forcing

to compare the effects of these two different means of introducing the same forc-

ing mode. Figure 5.30 compares these effects at low excitation amplitudes while

Fig. 5.31 provides a comparison at high excitation amplitude. Both means of forc-

ing control the vortex formation process. The difference shows up in the minimum

amplitude required to generate distinct vortex rings and in the size of those vor-

tices. It appears that the internally introduced excitation is much more effective in

g vortex roll-up and hence produces larger structures at a given forcing level.

Figures 5.30 and 5.31 also provide an unintended example of -iarticle-tracking. A

particle track is seen to the right of the jet near its exit in Fig. 5.30a. Another track

i, seen in the upper left corner of Fig. 5.31b. These tracks provide an indication of

t the movement of the entr tined flow. Velocities could be deduced from these tiacks

:since the laser repetition rate is known. For example, the particle track consisting

of the four dots near the jet exit in Fig. 5.30 corresponds to a velocity of 17 m/s in

the plane of the light sheet. It is interesting that the particle in Fig. 5.31b moves

downstream and then upstream as it nears the jet. This cusped pattern suggests

that organized structures might exist in the jet even where they are no longer visible

3 du to the limitations of the smoke-v isualization technique,

I
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5I.3 te'lcally-excited .1" f

Even . a rsguar array of coaxiatl vorex ri.-gs indicates an axially-excited jet, a I
spiral deformation of a jet's sh?,-e is a signature of a helical!y-excited jet (Fig. 5.32).

T'ius signature takes different forms as the level of excitation is changed. At higher

,ivels o forcing, the spiral shape is more pronounced and the vortex structures are

iargcr (Figs. 5><; and 5.34). The staggered orientation of the vortical structures in

zitese cross-scctons siggesits . at the structures are sections of tilted rings or of a I

spiral tube.

As was seen in the axia:.,-excited Jets, the same absolute excitation level does

11-t have tie :same effect at different Reynolds numbers. Figures 5.33 and 5.34 cor-

-espond to the same abs.lute level of excitation but different Re. Phase-averaged

"._aiizations of e . - d jets at differen* excitation amplitudes and Reynolds

bmers are given in Figs. 5.35 and 5.36. From Fig. 5.36, one can note that in- I

cr¢vuig amphuiu increa.es the global spreading angle of the jet. This correlation

of amplitude and angle is not seen in the axially-excited jet (Fig. 5.25). I
The effect of St. at a fixed excitation amplitude is seen in Fig. 5.37. A similar

comparison at d higher amplitude is presented in Fig. 5.38. Figures 5.39 and 5.40 I
provide an enlarged view of the near field of these flows. The primary effect of

TI.feasing Sth is the decrease of the spacing between vortex structures. Two vortex

cores are seen coalescing on the right, side of te jet in Fig. 5.40c.

Te values of 511h cosidered here were cho:;en to be one half of the values used I
7-, thf, axi.lv-excitid 'ct. (Fig. 5 28). Th's choice follows from the fact that in the

jet ife hclcal freqpiercY is half of the axial frequency. I
ih, phase ciOlitI)n of a helically-excited jet is shown at Reynolds number

I tiO.')O in !'ig . 4'. Succes-ive pictures are separated by 45' in phase. Focusing

,,n tl - h a1eCKt iut f th- :hear laver around z/D - 2. one notes that the

',, e r i,, it, aal " thicken-., ,, ,'i a large- vortical structure, arTd subsequently

!1 h ',,:!I irc lridao,' Jhwnstream. Another way to consider

i: ,f h. je- i.s to waih he changing :hape of the jet core. AtU
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some phases the initial bend of the jet core is to the right while at other phases it is

to the left. Comparing views that are 180' apart in phase is like looking at mirror

images of the same flow.I
1 5.4 Bifurcating jet

The structure of the bifurcating jet differs dramatically from those of the axially

5 and helically excited jets. Figure 5.42 displays a cross-section of a bifurcating jet in

the plane of bifurcation at Re = 10,000 and Sta = 0.55. The jet appears similar to

an axially-excited jet near the exit except for the slight displacement and tilt of the

vortices. Farther downstream, however, the flow abruptly splits into two distinct

jets with an included angle of 700. Initially adjacent vortex rings propagate along

different branches of the jet. This results in the jet fluid being stretched back and

I forth between the two branches of the jet. Eventually, the vortex sheet connecting

adjacent vortex rings vanishes.

I In this case a transverse rather than helical excitation is used. The transverse

forcing is achieved by turning off the two external speakers that do not lie in the

plane of bifurcation. Bifurcation occurs only when the phase between the axial and

Itransverse signals is properly adjusted.

Figure 5.43 presents this bifurcating jet at different phases of the transverse

excitation. Figures 5.43a-d correspond to one half of the excitation period, and

Figs. 5.43e and 5.43f correspond to the other half. During each half of the period

5 one vortex ring is produced near the jet exit. This is consistent with the fact that

the ratio fa/ft exactly equals two. Since these two rings evolve during differel.t

5 halves of the transverse signal, they tilt toward opposite sides of the jet.

Looking at the third ring downstream from the jet exit, one can see vortical

5 fluid being pulled through the centc of the vortex. In Fig. 5.43e, it appears that

the entrained vortical fluid originated from the vortex sheet connecting the second

5 and third vortices. As this segment of the vortex sheet passes through the third

I
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vortex, it closes on itself to form the observed closed element. It is subsequently

stretched toward the outer surfaces of the vortex ring as seen in Fig. 5.43f. 3
Figures 5.43c and 5.43d show that the vortex rings do not always remain intact

as they separate onto alternate trajectories. The left half of the fourth vortex ring 3
seen in Fig. 5.43c is swallowed by the fifth vortex ring in Fig. 5.43d.

A bifurcating jet at Re = 50,000 is displayed in Fig. 5.44. Unlike laminar vortex 3
rings in the low Re jet, the vortex rings in this flow are very turbulent. Additionally,

the large vortical structures are formed from the coalescence of much smaller ones 3
rather than directly from the initially laminar shear layer. The cross-sections of

several vortex rings can be seen on the left branch of the jet. Bifurcating jets at I
Re = 100,000 and at different combinations of axial and helical amplitudes are

presented in Figs. 5.45 and 5.46. 3
The phase-evolution of a bifurcating jet at Re = 100,000 and Sta = 0.55 is

!)resented in Fig. 5.47. Each phase-averaged picture corresponds to a different

phase of the helical excitation. The phase difference between successive views is

450 . Within the first two diameters, one can see adjacent vortex rings tilted toward

opposite sides of the jet. In this case, however, the vortex structures are not able I
to separate from each other onto alternate trajectories. Instead, sections of two

adjacent rings corr.bine. In a full, three-dimensional view, one might see an array

of vortex rings tilting toward alternate sides of the jet with one side of a given ring

coalescing with a section of the ring downstream of it while its other side combines

with a portion of an upstream ring.

The bifurcating jet exhibits different behavior in the bifurcating and bisecting 3
planes. The bifurcating plane is the plane passing through the nozzle axis and

containing the two branches of the bifurcating jet. The bisecting plane is the plane 3
passing through the nozzle axis and perpendicular to the bifurcating plane. A

bifurcating jet at Re = 100,000 is viewed in both the bifurcating and bisecting 3
planes in Fig. 5.48. Note that the bifurcating jet does not spread axisymmetrically.

Instead, it spreads dramatically in the bifurcating plane while in the bisecting plane 3
the smoke disappears several diameters downstream from the jet exit. However,

I
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each branch of the jet spreads as a single jet along its own axis (Lee & Reynolds

1985b).

Unlike combined axial and transverse excitations, the relative phase between

Saxial and helical excitations does not determine whether the jet bifurcates but rather

determines the plane in which the jet bifurcates. One can rotate the bifurcating

3 jet about its centerline by simply changing the relative phase. Thus, one can look

at different cross-sections of the flow without moving the light sheet. Varying the3 relative phase in 30' steps, one obtains the cross-sections in Fig. 5.49. Abrupt

changes in spreading angle are seen as the bifurcation plane is rotated away from

,he plane of illumination. Views that are 1800 apart are mirror images of each other

since they correspond to viewing the jet from opposite sides of the flow.

I The effect of varying Ph while keeping Pa fixed is considered in Fig. 5.50. A sim-

ilar comparison at a higher value of Pa is presented in Fig. 5.51. The corresponding

phase-averaged visualizations are given in Figs. 5.52 and 5.53. Figure 5.54 is an en-

larged view of Fig. 5.53c. One can see that the spreading angle definitely increases

with Ph. Figures 5.50d and 5.51d suggest that increases of Ph above a certain level

results in the spreading angle decreasing. However, one would not make the same

conclusion from the phase-averaged visualizations. Part of the explanation of this

discrepancy might lie in the fact that the instantaneous and phase- averaged pic-

tures do not generally correspond to the same phase of excitation. As Fig. 5.55

illustrates, when the phases of excitation are essentially identical, the two different

visualization schemes are consistent.

3 A similar comparison of amplitude variations at Re = 100,000 is presented in

Fig. 5.56. When Ph is low, the jet is almost identical to an axially-excited jet.

Noticeable differences along with larger spreading angles result from higher levels

of Ph.

The effect of varying pa while keeping Ph fixed is considered in Fig. 5.57. The

phase-averaged pictures in Fig. 5.58 correspond to the same value of Ph but to a

partially different set of values of pa If p, is too small, little difference is seen from

the helically-excited jet (Figs. 5.57a and 5.57b). At certain levels, increasing p,1
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increases the spreading angle (Figs. 5.57c, 5.57d, 5.58b, and 5.58c). The increases

in spreading angle are minimal when Pa > 2.8% (Compare Figs. 5.56d & 5.59 and

Figs. 5.58c and 5.58d.).

Bifurcating jets at different Sta are compared in Fig. 5.60. The corresponding 3
phase-averaged views are given in Fig. 5.61. A comparison at lower excitation levels

is presented in Fig. 5.62. Over this range of Sta, the changes in spreading angle are 3
minimal although Fig. 5.60 does suggest a small increase in spreading angle with

Sta. 3
Along with excitation amplitude and frequency, the method of forcing also af-

fects the spreading angle. Figures 5.63 and 5.64 illustrate the effects of two means I
of forcing on a bifurcating jet at Re = 100, 000. In Figs. 5.63a and 5.64a, the axial

and helical excitations are introduced separately through the internal and exter- I
nal acoustic drivers. In Figs. 5.63b and 5.64b, the two signals are combined and

are introduced through the external drivers alone. At the lower excitation level I
(Fig. 5.63), there is only a small difference in the spreading angle between the two

means of forcing. At the higher level (Fig. 5.64), the bifurcating jet produced by

the separate excitations spreads much more rapidly.

Many of the trends observed in this section can be summarized by plotting the U
spreading angle as a function of excitation amplitudes. The spreading angle is taken

to be the angle formed by the edges of the smoke. Except at Re = 10,000, only

phas.e-averaged pictures are used to determine spreading angles. Since the vortex

structures are very distinct and well organized at Re = 10,000, one can easily

determine the spreading angle from instantaneous pictures. The dependence of

spreading angle on excitation amplitudes at Re = 100,000 and 50,000 is presented

in Fig. 5.65 for the method of combined excitations. Figure 5.65a clearly shows

that the spreading angle increases as either excitation amplitude is increased. The

spreading angles range from around 170 (typical of natural jets) to over 40' . This

trend is not as distinct at Re = 50,000 (Fig. 5.65b).

The largest spreading angles (up to 70') resulted Ahen separate excitations 3
were used. Figure 5.66 displays the spreading angle characteristics of bifurcating
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jets at Re = 10,000 and 100,000 produced by separate excitation. These re> ,:ts

also irdicate that the spreading angle increases with both excitations amplitudes.

The mean velocity field of a bifurcating jet at Re = 100,000 is compared with

3that of a natural jet in Fig. 5.67. Since a single-wire probe was used to make this

measurement, the measured velocity is actually the magnitude of the velocity vector

3 in the plane of bifurcation. This result indicates that the double-peak profile seen

in low-Re flows (Fig. 1.4) is also characteristic of high-Re bifurcating jets.I
3 5.5 Summary

This chapter contains the results of a flow-visualization study of excited jets.

The effects of axial, helical, and combined excitations on the structure of round

jets were considered. While a regular array of coaxial vortex rings are produced by

I axial excitation, the shear layer of a helically-excited jet appears to form a spiral-

shaped vortex. Combining axial and helical excitations with fa/fh = 2 produces a

I bifurcating jet.

Reynolds number and excitation amplitudes were the primary parameters con-

sidered in this experimental study. The Reynolds number was varied by changing

the mean velocity of the jet. As one would expect, a wider range of length scales

and turbulenat rather that laminar vortex structures are seen at the higher Reynolds

numbers. Increasing the excitation amplitude produces more distinct vortex struc-

tures and, in the case of the bifurcating jet, generally increases the jet spreading

angle. The excitation amplitudes required to produce bifurcating jets was foundi to

increase with Re, but no general scaling relationship could be determined.

I

I
I
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Chapter 6

DISCUSSION

Properly-combined axial and helical excitations can cause a turbulent round

jet to split into two distinct jets. This unique flow, known as a bifurcating jet,

exhibits spreading angles as high as 70' . This work has focused on determining

the mechanism of bifurcation, extending previous work to higher Reynolds number

flows, and understanding the effects of excitation frequency, amplitude, and phase

* on the evolution of bifurcating jets.

This research effort involved both a numerical and experimental investigation of

bifurcating jets. The numerical work primarily targeted the questions concerning

the mechanism of bifurcation and the role of excitation frequency. The experimental

I work extended the bifurcation phenomenon to Re = 100, 000 and documented the

effects of various excitation parameters.

The research methods and results were described in Chapters 2-5. The signifi-

cance of those results is discussed in the following sections on natural states of round

jets, the structure and features of bifurcating jets, the role of excitation frequency,

the role of excitation amplitude and phase, and the mechanism of bifurcatiol. The

3 effect of Reynolds number is touched on in each of these sections. The reasons for

the discrepancies between computations 2.nd experiments are not completely clear,

3 but several possible causes are presented in Section 6.5. Finally, the chapter con-

cludes with some thoughts on the implications of this specific work on the general

3 issue of jet flow control.

I 6.1 Natural states of round jets

3 Stability theory predicts the existence of both axisymmetric and helical modes

in round jets (Michalke & Hermann 1982). This prediction is consistent with the

5 visualizations of unexcited jets (Figs. 5.8-5.10). Axisymmetric vortices of varying

scales are found in the near field, and the spacing of the initially-formed vortices

7
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corresponds to the natural frequency of the shear layer. The interaction of the ring

structures is quite asymmetric at the higher Reynolds numbers. Downstream of the

potential core region, the jet sometimes exhibits a helical structure.

Axial forcing produces an orderly arrangement of large axisymmetric structures.

At Re = 10, 000, these structures are initially laminar, and the roll-up of the shear

layer is clearly visible within the vortex cores (Fig. 5.17). At all higher Reynolds

numbers, the structures are turbulent, and pockets of ambient fluid within the core

are only seen at the highest forcing amplitudes (Fig. 5.24).

Helical forcing generates asymmetric vortex structures. We have demonstrated

this at Re up to 100,000 but expect it to be true at all Re for subsonic flows. The I
cross-scctional view suggests that the complete structure is a single vortex coil like

that seen by Kcch et al. (1988) at Re = 10,000. The phase-evolution of the helical I
structure at Re = 100,000 indicates that the structure rotates as time progresses

(Fig. 5.41). Thus, the time-averaged, net axial vorticity is zero. I

6.2 Structure and features of bifurcating jets I

The most striking feature of the bifurcating jet is its wide-angle, Y-shaped struc- I
ture. This structure is formed by the jet splitting into two distinct jets. Superim-

posed on this flow are the distinct vortex rings formed by the axial excitation.

Initially adjacent rings propagate aiong alternate branches of the jet (Fig. 5.43). In

the cross-sectional views, portions of the shear layer appear as filaments connecting

the initially adjacent ri-ags. As the rings get far enough apart, the vortex sheet N
connecting them is apparently torn apart. Eventually, the vortex rings break down

into turbulent puffs of smoke. The stretching of the vortex sheet and the breakdown

of the vortex rings results in smaller-scale secondary structures.

At the higher Reynolds numbers (Re > 10,000), there is a much wider range of

scales, and the structures are much more turbulent. As a result, tfle characteristic

Y-shaped structure seen at lower Re is not seen. Instead, one simply sees a jet that 1
spreads rapidly in one plane but not in the perpendicular plane. In the near field,
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H however, vortex rings tilting in opposite directions are observed as in the bifurcating

3 jet at Re = 10,000.

These observations about the bifurcating jet lead to an interesting question of

semantics. How should a bifurcating jet be defined? Two criteria are proposed.

First, do visualizations indicate that the jet splits into two separate jets? Second,

5 does the velocity profile of the jet consist of two separate peaks that persist into the

far field of the jet? Satisfaction of either of these criteria should be considered as

sufficient for classifying a jet as a bifurcating jet. The fact that a jet spreads much

more rapidly in one direction than in the perpendicular direction is not a sufficient

3 condition since elliptic and indeterminate-origin jets also exhibit this characteristic.

In the case where the turbulence of the flow obscures the structure of the jet, the

flow-visualization criterion should be that the jet fluid disappears as one moves

downstream in the transverse plane. This secondary criterion is consistent with

3 the pictures and velocity measurements presented in Figs. 5.48 and 5.67. Based on

these ideas, one might consider many of the "bifurcating jets" discussed in Ch. 5 to

correspond actually to a transition state linking natural and bifurcating jets.

I 6.3 Role of excitation frequency

3 :The role of the excitation frequency can be characterized in terms of the fre-

quency ratio Rf and the axial Strouhal number Sta. Dual-mode excitation will

cause a jet to split into two distinct, stationary jets only if RI = 2. The flow

phenomena that occur when Rf 5 2 are well documented by Lee and Reynolds

3 (1985b).

The axial Strouhal number determines the frequency characteristic of the largest

vortex rings. Consequently, Sta also determines the spacing between rings, and

the spacing decreases as Sta increases (Fig. 5.28). In a similar manner, the he-

Ilical Strouhal number determines the length-scale characteristic of helical struc-

tures (Figs. 5.39 and 5.40). Both the computations and the experiments of Lee

and Reynolds (1985b) demonstrate that within a range of Strouhal numbers, the
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spreading angle increases. Outside that range the jet does not exhibit two distinct

branches. Below that range the jet appears much like a natural jet. I
The range of Sta over which the bifurcation phenomenon occurs does not depend

on 6,/R. The vorticity thickness at Re = 10,000 is about seven times larger than

that at Re = 100,000. yet in both cases the maximum jet spreading occurs around

Sta = 0.55. At very high excitation amplitudes, the bifurcating jet at Re = 10,000

and Sta = 0.55 (Fig. 5.42) spreads at an anglc identical to a bifurcating jet at

Re = 3700 and Sta =- 0.55 (Fig. 4.26e in Lee & Reynolds 1985b). These observations 3
imply that it is the large vortex rings formed by pairings or collective interactions

and not the small ones formed by the initial roll-up of the shear layer that are 5
important in the bifurcation process. The invariance of Sta over this Reynolds

number range also suggests that the key mechanism causing bifurcation is an inviscid I
instability.

6.4 Role of excItation amplitude and phase

While the mode of excitation determines the type of structures formed, the

amplitude of excitation determines how distinct and how large those structures are. U
The amplitude also affects how structures are formed. In the case of axially-excited

jets, low and moderate levels of forcing produce large vortices by causing a collective I
interaction or multiple pairings of the smaller vortices. Distinct structures first

appear in the phase-averaged views at Re = 50,000 and 100,000 when pa - 1% U
(Fias. 5.23 and 5.25. A large forcing level (Pa = 12%) can produce the large

structures directly alt Re = 10,000 (Fig. 5.18).

In the case of thin laminar exit boundary layers, 01D scales with Re - 1/2. Com-

bining this scaling relationship with Eqn. 4.5, one can show that the ratio of the

natural to the forcing frequency at fixed StD and St8 scales with Re 1/2 . Conse-

quently, as one incre-ses Re, one moves farther from the peak of the amplification

curve of linear stability tit;cory. Therefore, stronger forcing is required as Re in-

creases.

I
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I The Reynolds number also has an effect through the mean velocity, which is

an important scaling parameter in stability analysis. No clear Reynolds-number

scaiing of the total amplification at a fixed StD was found. This is not surprising

3 since both linear amplification and nonlinear saturation, as well as laminar and

turbulent structures, are involved.

5 In the bifurcating jet, increasing either the axial or helical excitation can increase

the jet si reading angle. The results suggest that bifurcation does not occur below

certain levels and that jet spreading does not continue to increase beyond certain

limits. The bounds of this amplitude range could not be clearly defined.

STypically it is the axial amplitude that must be larger. One might expect it to

oe the other way around since the jet splits in the direction of the helical forcing.

11owever, it is the interaction of vortex rings that splits the jet and causes the

wide spreading angles, and it is the axial amplitude that governs the production of

3 those rings. The higher the axial amplitude, the more concentrated is the vorticity

Of the rings and the stronger are their interactions. Also, linear stability predicts

that* hc.'ical disturbances arc more strongly amplified even in the near field when
., (IILuI.,II(_e . quuficy is much less than the natural frequency (Michalke &

3 IHermann 1982).

Along with the amplitude, the phase of excitation is very important. The phase

rterred to here is the relative phase between the axial and helical/transverse signals.

When a helical excitation is used, this phase determines the azimuthal plane in

,hih the jet bifurcates. When a transverse excitation is used, the phase determines

Swr. tiher or not bifurcation occurs. As discussed in Ch. 4, bifurcation occurs in the

azimuthal plane in which every other peak of the axial signal coincides with a peak

of the helical signal.

5G.5 (omparison of computations and experiments

3 A\ , r iparisor, of the numerical results with the experimental results of ,ee &

ioid, (l >,b) reveals both major similarities and significant differcnces. The
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Y-.pcia~w, s'iructure of the bifurcating jet, the alternating trajectories of the vortex I
r~fit!,i u ircreLse of spreading angle with Strouhal number and excitation ampli-

TIdt,. , '> inviscid vortex-interaction model are common conclusions. Another

inT :--T 1:',, Q'I arila cf comparison is the relative spacing of the vortex rings. The pa-

was defined in Ch. 3 to be the ratio of the distance between rings on a

- bifurcating jet to that on the trunk of the jet. The analysis of a train

,i r , :=1.6- 1.7 over a wide range of St. The simulation of a bifurcating

,. a; 12 predicts a value of )Z, = 1.5. Experimental results indicate a value

,:, n.zs.l!.1,5.17, and 5.42). The fact that the jet splits into two distinct

that the characteristic frequency of branch rings equal half that of 3
r':rbation. However, , does not equal two because of the decrease of

: ' i, v!, vity with increased ring spacing. 3
:. of results differ in the specification of spreading angle dependence

t .-. The numerical simulation requires an order of magnitude higher 3
,ll ';)1, LoK> a, iieve comparable spreading angles. Additionally, the computations

f :.i ( ~at ? ifurcating jets with distinct branches do not occur for Sta > 0.42 1
v thii t! xperiments specify a bound of Sta > 0.65.

Tc ( e ci>crepancies exist, in part, because of the approximations made by the 3
ru ,! .imlation. First, the numerical scheme represents vortex rings by piece-

ni- i i -ar segments. Second, to keep the number of parameters low, the tilt of 5
;i(izzje i the experiments of Lee and Reynolds (1985b) is not included. Finally,

" ;- of the shear layer is assumed rather than simulated, and only a single 3
ia; ,, ,,urosents each vortex ring. Nevertheless, the numerical simulation does

c-c:r , ,rstrate the central role of vortex interactions, and elimination of these 3
a r ~ ,,-::is \ouid require a much more complex and costly simulation.

.6 \,c :,;ii~r of bifurcation 5
# Cn ( ,tiOn of imposed (isturbances in shear flows is often discussed in terms

*; ,:- ,.i vwa vs or vortex interactions. The dominant presence of vortex struc- I
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tares in bifurcating jets, the nonlinearity of the bifurcation process, and the ap-

I proach of the numerical simulations suggest reasoning in terms of vortex concepts.

One could possibly explain the physical mechanism of bifurcating jets in terms of

3 instability waves, but a vortex-interaction model is more intuitive and follows more

directly from the results of this work.

The mechanism causing bifurcation can be described in terms of vortex inter-

actions. The shear layer rolls up into a periodic array of vortex rings in response

3 to the axial forcing. The helical or transverse forcing displaces these rings eccentri-

cally. The resulting staggered array of rings is unstable. As a result, the rings tilt

3 away from each other until initially adjacent rings eventually propagate along two

different trajectories.

I The instability of an eccentric arrangement of rings follows from their mutual

induction. Each ring causes its neighboring rings to tilt away from itself. The

strength of this interaction depends on the spacing and eccentricity of the rings

and their circulation. Thus, both excitation frequency and amplitude affect this

Uinteraction and, consequently, the spreading angle of the jet. Once two separate

trajectories are established, the rings on each branch are concentric with each other,

and hence each branch evolves as a separate jet. Similar reasoning can be used to

explain the blooming jets.

3 6.7 Soinc thoughts on jet flow control

This work along with that of Lee and Reynolds indicates that one can dra-Inatically modify the evolution of jet flows with moderate perturbations. The ef-

fectiveness of these perturbations lies in their ability to trigger 9ow instabilities

that amplify the effects of the imposed excitations. Additionally, it is important to

n(te that the proper triggering of two different instabilities produc( an effect that

neither can achieve on its own.

3 The specific means of introducing the required pert urbations is not cril cal to

gTrieratirig a bifurcating jet as long as the excitation is focused on the shear layer
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at the exit. Both mechanical and acoustic systems are effective, and in acoustic

systems, the different modes can be introduced separately or together. However,

these systems are not equally effective. Generation of the axial excitation by the

internal rather than the external acoustic drivers was found to be more effective.

Additionally, a helical excitation that only oscillates the origin of the jet can not

force the shear layer to roll up into a coil-like structure (Lee & Reynolds 1985b)

whereas a system that produces an azimuthally-varying helical perturbation can

(Koch et al. 1988).

There are two ideas inherent to the concept of flow control. One is the modi-

fication of a flow from its natural state to some desired state. This is primarily a

question of physics. The other is the control system required to achieve those mod-

ifications. Since the roles of most of the key parameters are well understood, one

could automate a bifurcating jet with an open-loop control system. Sensing the jet

velocity, a control system could easily calculate the required excitation frequencies.

This system could maintain a bifurcating jet in the presence of variations of the

mean flow. A closed-loop controller would be required to optimize the excitation

to achieve a desired system characteristic or to implement the bifurcating jet in

widely-varying ambient conditions.

I
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I Chapter 7

* CONCLUSIONS AND RECOMMENDATIONS

3 A combined numerical and experimental investigation of bifurcating jets has

been described. The numerical scheme is based on the discrete-vortex method. The

1 experiment involved dual-mode, dual-frequency, acoustic excitation of round jets

at Reynolds numbers from 10,000 to 100,000. The effects of excitation amplitude,

3 frequency, and phase and the significance of Reynolds number were considered.

* 7.1 Conclusions

3 On the basis of the work described in the previous chapters, several conclusions

can be made that affirm and extend the previous understanding of bifurcating jet

3 flows. Those conclusions are as follows:

1. Dual-mode acoustic excitation can produce bifurcating jets in air at Reynolds

5numbers up to 100,000 and Mach numbers up to 0.22.

2. The structure of the bifurcating jet consists of a Y-shaped jet with adjacent

vortex rings propagating along alternate branches of the jet. This jet spreads at

angles up to 70' in the plane of bifurcation. The characteristic frequency of the

rings on a branch is half that of the rings on the trunk of the jet. The spacing

* between rings is about 1.5 times greater on the branch than on the trunk.

3. The bifurcation phenomenon can be modeled as an inviscid, vortex-interaction

3 process. Axial excitation periodically creates vortex rings. Helical or transverse

excitation causes the rings to be displaced and tilted away from each other. The

* array of vortex rings produced by the combination of these two excitations is

unstable as a result of the rings' mutually-induced motions.

4. Bifurcation occurs only within a range of Strouhal numbers. Within that range,

the spreading angle increases with Strouhal number. The numerical simulations

3predict that range to be 0.30-0.42. However, the experiments show that the

1 81I S



1

upper limit should be around 0.65. Bifurcation occurs only when the ratio, Rf, I
of axial to helical frequency is two.

5. The relative phase between the axial and helical signals determines the plane in

which the jet bifurcates. The relative phase between axial and transverme signals

determines whether or not a jet bifurcates.

6. The spreading angle increases with both excitation amplitudes. The results 5
suggest that bifurcation does not occur below certain levels and that jet spread-

ing does not continue to increase beyond certain limits. The bounds of this 5
amplitude range could not be clearly defined.

7. For a given nozzle geometry, the required excitation levels increase with Reynolds 5
number. This ii partly due to the fact that O/D decreases with increasing Re,

resulting in a larger disparity between the imposed and naturally most amplified 3
frequencies. The ;nrease of mean velocity with Re is another factor. The useful

range of excitation Strouhal numbers is independent of Reynolds number. 3

7.2 Recommendations

Further study in the area of bifurcating and blooming jets needs to address the I
following issues concerning amplitude scaling, receptivity, and competing mecha-

nisms: a
1. Determination of the excitation required under different flow conditions re-

quires formulation and understanding of the scaling parameters. Further work

is n,;eded to establish how the required helical excitation amplitude and power

scale with jet diameter.

2. Since increases in jet velocity require increases in excitation amplitude, produc- 1
ing the excitation levels required to control high-velocity flows is difficult and

costly. Thus, techniques of enhancing the receptivity of the shear layer to the 5
excitation signal need to be developed.
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1 3. Many flows of practical interest involve supersonic velocities, combustion, and

forward flight. The effectiveness of dual-mode forcing in the presence of shock-

shear-layer interactions, additional forcing produced by combustion, large den-

sity gradients, and external flow is not known.

Research in these areas is important not only to provide new insights about the

i physics of excited jet flows but also to make practical applications of bifurcating

jets mcre ,

I
i
I
I
g
I
I
I

I
I
i
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Appendix A

3 DERIVATION OF INDUCED-VELOCITY FUNCTIONS

3 A.1 Vortex segment

5 Consider the point at r and the vortex segment defined by e = r 1 - r0 . Let

rj( ) = ro + e, for 0 < E < 1. Then by Eqn. 2.6, the velocity induced by the

5 vortex segment is given by

u(r) - r [(r - ro) X e] re A.1

I47r Ju jlikr - ro) - Eel2 + ac ]3/2'

I Using the definitions of p and q given in Eqn. 2.10, one can rewrite Eqn. A.1 as

u(r) [(r - r) e] 1 dA.2
r) - ell f [ 2 2p + q2 3 / 2

Solving the definite integral in Eqn. A.2, one obtainsI
u(r) =-- 1 ~-r(~) e A.3

47r V/ (-p)2 + A q A2 lel 3

3 where A2 = q2  p2 .

£A.2 Circular vortex filament

3 Consider the point P located at (r, z, 0) and a circular vortex filament having

radius R and circulation r and centered at the origin. Applying Eqn. 2.6 and

3 making use of the symmetry of the filament about the plane defined by P and the

filament's centerline, one obtains the following components of the induced velocity:

U FRof" zcosO dO, A.4a
2 r - [R2 + z 2 + r 2 + acr2 - 2Rr cos 0]3/2
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rR 0 R-rcos0 I
and 27r - J [R 2 + z2 + r 2 + aC2 - 2Rr cos 0] 3/ 2 dO A.4b

and

UO =O. A.4c

Simplifying Eqn. A.4a and A.4b by substitution of the non-dimensional variables

defined in Eqn. 2.13 gives I

= (F/R)2 f r  Cos 0)/ dO, A.5a IUr=27ro93/2 fo(1 --YCos 0)3/2

and IUz-= (r/R) 7r 1-Cos O.A5
2t 3/ 2 7 (1 - os0 dO A.5b

Solving the definite integrals in Eqn. A.5 yields

(r/R)2 1 E( - ml) - K(l - ml)] A.6a I
and 2

(]FI) E(I- ml) + 2K(1-ml) A.6b
- rP3/2R)Y+I (I - q) 2

where K and E are complete elliptic integrals of the first and second kind and m1  g
is given by Eqn. 2.13f. These complete elliptic integrals are defined as follows:

/ 2 dO I
K(m) f 1 O A.7af0 Vi - m sin2 0'i

and

E(m) j 1 - msin2 0 dO. A.7b

Polynomial approximations for K(m) and E(m) are given in Sec. A.4.

I
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A.3 Semi-infinite cylindrical vortex sheet

I Consider a semi-infinite, cylindrical vortex shcet extending along the z-axis from

-oo to 0 and having a circulation per unit length equal to -y. The velocity induced

at a point (r, z, 0) can be found by adapting Eqn. A.4 to this geometry as follows:

I _R 0 r (z-z')cosO 8
Ur -27r- f - [R2 + (z - z')2 + r 2 + aa 2 - 2RrcosO]3/2 dO dz A.Sa

yR -T 0  R R- rcos0
Uz 2-- JJ dOdz', A.8b

27r f [R2 + (z - z ±)2 + r2 + aU2 - 2Rrcos9]3/ 2

and

5u = 0. A.8c

Simplifying Eqns. A.8a and A.8b by the dimensionless variables and integrals

I defined in Eqns. 2.13, 2.15, and A.7, one obtains

" (f, ) =T I(I) A.9a

* and

and \Z f, 
[ (2 -p) -1

A.9b

! 'V1 l fK(1 -ml)-+(,a rT(p,'iT)]}

3 Let € (7r - 3)/2. Then by Eqn. 2.15c,

2 (7) /2  1 - 2cos2 dO. A.10t(,7 V" x1 - f! + 21 cos2

5 The definite integral in Eqn. A.10 can be split into two definite integrals that match

the complete elliptic integrals (Eqn. A.7) such that

1 - 2 [K( - rn) - (1 -4 q) E(1 - mA)].
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A.4 Approxiniations of elliptic integrals I

When evaluating K(m) and E(rn) numerically, it is valuable to have simple 3
and accurate app.-,xirnations for them. The following approximations are from the

Handbook of Mathematical Functions by Abramowitz and Stegun (Dover Press): I

K(m) rz1.386291,44 - 0.1119723m 1 + 0.0725296m 2

A. 12a

(0.5 - 0.1213478m 1 + 0.0288729m2) In(l/m 1 ) + EK(m),

andr I
.- -(7n)1 - 0..46015m 1 + 0.1077812m 2

I ~A. 12a

(0.24152 727ml + 0.0412496m2) ln(1/ml) + CE(m), A

whcre rK(rn) < 3 x I0 - 5 , 6E(m) <4 x 10 - , and m + m 1  1. 1
8
I
I
I
I
I
I
I
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App-ndix B

5PROGRAM LISTINGS

3 B.1 BIJET

IC
C

C BIFURCATING/BLOOMING JET SIMULATION
C
C

V cThis program uses vortex filaments to simulate 3-D

C bifurcating/blooming jets. The calculation uses a vortex

C filament technique to represent the vorticity in the jet.

m C An analytical function is used to account for the vorticity

C in the boundary layer in the nozzle. These two components

C of the simulation are combined bv superposition.I C
C A single filament is used to represent each vortex ring.

C The user chooses STNUM (Strouhal number based on axial-

C excitation frequency) and FRATIO (frequency ratio, FRATIO -

C axial/orbital). The program calculates the corresponding

C axial and orbital frequencies of excitation and the

C circulation/length of the nozzle function.

C

* C

C Output: Unit 6

C

C Written by: David Parekh

C Date: October 1983

CI ********i*******************************************************

C * Dimension variables and define common blocks.

DIMENSION RNIODE(3,5000),CRAD2(500),GAMMA(500)

DIMENSION NISTART(500),NEND(500)

DIMENSION POSNZ (3, 1000), POSRNG(5,3,64),CENTER (3)3 COMMON /CORE/ CRAD2
COMMON /RING/ NPERRG, NRINGS, NNODES, NSTART, NEND

COMMON /MANYPI/ HALFPI,PI,TWOPI

COMMON /PARN/ GAMMAAT.PKA,nnEF
COMMON /POS/ RNODE
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C Specify constants and parameters and initialize variables.

DATA ALPHA/0.2066/ vorticity-distribution factor

PI = 2. * ASIN(I.) 3
HALFPI = PI / 2.

TWOPI = 2 PI

COEF -1. (4. *PI)

AMP - 0.3 amplitude of nozzle excitation

NOZEXC = I type of nozzle excitation:

(NOZEXC - 0) -> none 1
(NOZEXC < 0) => sinusoidal flapping

(NDZEXC > 0) > orbital

STNUM = 0.32 1 Strouhal number based on axial frequency

FRATID = 2.0 I ratio of axial to orbital frequency; must

have integer value </- 1st dim of POSRNG 3
GAM = 1 0 1 circulation of ring

VDELT - 2.0 / (GAM * (STNUM*STNIUM)) ! time between ring creations

GkMJET = SQRT(2. CAM / VDELT) 1 circulation/length of jet

PPDA = 20. period of axial excitation in DELT units

PRDO = FRATIO * PRDA I period of orbital excitation (< dim POSJ)

'iPRDA PRDA

NPRDO = PRDO

DELT = VDELT / PRDA time step of simulation

DELT02 = DELT/2.0

NSTEPS = 120 1 total number of time steps in simulation
NSPACE = 1000 I time step at which to change SPACE size 3
NEWVTX - NPRDA see SUBROUTINE GENRNG

NPLOT = 10 I see SUBROUTINE PLOT

:2UT = 40 cc- SUBROUTINE OUTPUT

TIME = 0.0

NRINGS - 0 1 current number of rings I
ITH IOUT 1 counter for SUBROUTINE OUTPUT

NPTH = NPLOT I counter for SUBROUTINE PLOT

INEWV = IIEWVTX I counter for SUBROUTINE GENRNG 3
NPHASE = FRATIO I counter for SUBROUTINE CENRNG

INOZ - NPRDO I counter for SUBROUTINE RUNGE

C * Print output header. 3
WRITE(6,100)

100 FORMAT('I',gX,' NODE',15X,'X ,25X,'Y',21X,'Z',///)

C * Calculate position of center of jet exit.

CALL r4OOZ;ouLAM.P,PRLONPRDr).NCZEXC, POSNZ)

C * Specify ring parameters and generate first ring at time zero.

C * * Specify geometry of ring.

NPERRI = 32 I number of nodes per ring
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RAD -1.0 radius of ring

CORF2 - 0.01 square of the filament core radius

C - Generate array of coordinates of initial ring node positions.

CLL R'NGI)S(T'40PI,RAD,N*PERRG,N;PRDA,FRATIO,POSNIZ, FOSRNG)

C-* Generate initial zing.ICALL GEXRX;G(GAM,CORtE2,FRATIO,POSRNG, INEWiVA'.PHASE. NNODES)

C - Print initial coordinates of ring.3 CALL OUTPUT (N!XODES TIME, ITH)

Initialize plotting routine and plot initial ring.

C *Initialize GWE.

CA~LL IGWE(23)

Define space boundaries.

CALL SPACE(-0.5.25.0, -3.0,3.0, -3.0,3.0)I * Plot initial ring.
CEXTER(l) =POS'4z(1,!)

CE';TER(2) P03N;Z'2,l)

CENTER(3) -POSWz(.1)

CALL PLOT(&.PTH,"XPLOT,CENTER)3 Carry out the simulation for NSTEPS time steps.

Dii 1000 ISTEP=l NSTEPS

C *Increment counters at beginning of time step.U 'EWV = IIEWV + I
1TH =ITH + I

NPTH = TTH .- IITNTE TI!.E -DELT
!F(I'CZ NE. NPRDO)THEN

IC;OZ =iNOZ + 1

ELSE
11,Z = I3F .,D IF

C**Assign positionl of center of jez exit.

CE'CTER(l) = POS!:z(1,1:OZ)I CE';TER(2) = POSNZ(2,I!NOZ)
CE';TER(3) = POSNZ(3 , I!OZ)

Update node positions by 2nd order Runge-Kutta.I CA!.L RUCC;E (DEL.T.DELT02 , NCODES, UPERR , GAJET ,CEC.TER)

G enerate a new vortex ring as specified.

1F (L:FWV.FAQ. UEWVTX)

& CALL CE'CR:G (CAM, CORE2 ,FRATIO POSRNIG, IN;EWV,!:PHASE, UCODES)
K**Piint node posiLions as specified.3iF,(:TH.EQ.IOUT) CALL OUTPUT(NC0ES,TINjE,ITH)

C *Plot rings as specified

IF(ISTEP EQ NSPACE) CALL SPACE(-0.5,50.0,-5.,5O0,-5 0,5.0)
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IF(!,PTH.EQ.!NPLOT) CALL PLOT(NPTHNPLOT,CENTER)

1000 CONTINUE

C * Specify end of plotting file.

CALL FLASH

STOP

EN'D

SUBROUTINE RN;GPOS(TWOPI,RAD,NPERRG,NPRDA,FRATIO,POSNZ, POSRNG)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C This subroutine (SUBROUTINZ RNGPOS) calculates the various

C initial positions of the ring filaments and assigns these

C coordinates to the array POSRNG. POSRNG is a three-dimensional

C array. Its first index designates one of FRATIO possible

C filament locations. The second index designates a coordinate

C direction, and the last index corresponds to the particular

C nodes. Thus, POSRG(2,1,23) contains the x-coordinate of

C the 23 node on the filament that is generated at position 2.

C The various filament positions correspond to the index I in

C DO-loop 20 in the subroutine.

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DIMENSION POSRNG(S,3,64),POSNZ(3,000), CIRCLE(3,64)

C * Calculate the coordinates of a circle of radius RAD, centered

C about the origin in the Y-Z plane.

SECT = NPERRG

THETA = TWOPI / SECT

DO 10 L=lNPERRG

DIV = L - I

ANGLE = DIV * THETA

CIRCLE(1,L) - 0.0

CIRCLE(2,L) = RAD * COS(ANGLE)

CIRCLE(3,L) - RAD * SIN(ANGLE)

10 CONTIN UE

C * Calculate the position of the filament nodes.

II - FRATIO assumes FRATIO has an integer value

K - 1 K designates which coordinate in array POSNZ

1 is the nozzle position corresponding to POSRNG

DO 20 I=I,II

DO 21 J=1,NPERRG

POSRNIG(I,IJ) = POSNZ(1,K) + CIRCLE(1,J)

POSRNG(I,2,J) - POSNZ(2,K) + CIRCLE(2,J)
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POSRNG(I 3,3) - POSNZ(3,K) + CIRCLEC3,J)

21 CONTINUE'I K - K +NPRDA
20 CONTINUE

RETURN

END

SUBROUTVtE GENRNG tGAM. CORE2 ,FRATID ,POSRNG, INEWV,NPAE

C This subroutine (SUBROUTINE GENRNG) specifies the initial

C coordinates and core size of the nodes on the newly created

IC vortex ring.
C

eCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCI DIMENSION RNODE(3,5000) ,CRAD2CSOO) ,NSTART(SOO) ,NENDC500),
& GAMMACSOO) ,POSRNG(5,3,64)

COMMON /CORE/ CRAD2I ~COMMON /RINGI NPERRG ,NRINGS, NNODES ,NSTART, NEND

COMMON /PARM/ GAMMA,ALPHA,COEF3 COMMON /POS/ RNODE

C Initialize and increment counters.

INEWV =0

NRINGS -NRINGS + I

NNODES -NPERRG*NRINGS

NRATIO =FRATIO

IF (NPHASE. NE. NRATIO) THEN

NPHASE - NPHASE + 1

ELSE

NPHASE - 1

END IF

C Specify node numbers, circulation, and core radius of ring NRINGS.

NEND(NRINGS) - NNODES

NSTART(NRINGS) =NNODES - NPERRG + 1

GANAA(NRINGS) -GAM

CKAO2(NRINGS) CORE2

C *Specify the initial coordinates of the nodes of ring NRINGS.

NSN - USTART(URINGS)

NEN - NEND (NRINGS)

INDEX - (NRINCS - 1) * NPERRG

DC 10 I=NSN ,NEN

K -I - IN DE X 
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RNOD(1,) = OSRG(NFASE1,U
RNODE(2.I) - POSRNG(NPHASE,1.K)I

RNODE(2,I) = POSRNG(NPHASE,3,K)

10 CONINECI)=OSN(PAE3K

COETIRNU

END3

SUBROUTINE NO'ZPOS CAM'P, PRDO, NPRDONOZEXC, POSNZ)

ccCcclccccccccccccccccccCCccCcccccCcccCccccccccccCC~ccCcCCCCccccccccc

C This subroutine (SUBROUTINE NOZPOS) calculates the positionI

C of the center of the jet exit as a function of time step and

C the type of excitation specified by NOZEXC. This subroutinea

C also assigns the calculated positions to the array POSNZ.

DIMENSION POSN.Z (3, 1000)

COMMON /MANYPI/ HALFPI,PI,TWOPI

C *Calculate jet center positions.I

THETA = TWOPI / PRD
IF CNOzEXC .GT.0) THEN3

DO 10 I=1.NPRDO

DIV -I - 1

ANGLE -DIV *THETA3

POSNZ(1,I) -0.0

POSNZ(2,I) =AMP*COS(ANGLE)

POSNZ3,I) =AMP*SIN(ANGLE)

10 CONTINUE

ELSE IF CNOZE-XC .LT .0)THEN

DO 20 I=1,NPRDOI
DIV - I - 1

ANGLE = DIV *THETA3

POSNZC1,I) =0.0

POSNZ(2,I) =AMP*COS(ANGLE)

POSNZ(3,I) =0.01

20 CONTINUE

ELSE
DO 30 I=1,NPRDO3

Postiz(1,I) = 0.0
POSNZ(2,I) - 0.0

POS1Z(3,I) - 0.0I

30 CONTINUE

943



END IF

RETURN

END

SUBROUTINE OUTPUT (NNODES ,TIME, ITH)

CcCCCCClCCCCCCCCCCCCCCCC ,oCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C This subroutine (SUBROUTINE OUTPUT) writes the coordinaites of

C the nodes to UNIT 6 every IOUTth time step.

c

CccccccCCcccccccccCcccCCCCcccccccccCccccccccCccCcccCccCcccCcccccc
DIMENSION RNODE(3.5000)

COMMON /POS/ RNODE

ITH - 0

WRITE(6,200) TIME

WRITE(6,201) (J,(RNODECK,J), K=1,3), .J=1,NNODES)

WRITE (6.202)

200 FORMAT(10X, 'TIME = ',F6.3./)

201 FORMAT(1OX.15,EX,Flg. 14,5X,F19.14,5X,Flg.14)

202 FORMAT(IX,/)

RETURN

END

SUBROUTINE PLOT (NPTH ,NPLOT, CENTER)

CcccccccccccccccccccCCCcCcccccCcCCCccccccccCCCcccccCcccccCCCCCcCC

c This subroutine (SUBROUTINE PLOT) generates a frame of data

C for the Evans and Sutherland every NPLOTth time step.

C

CCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DIMENSION RNODE(3,5000) ,NSTARTCSOO) .NENDCSOO),

& CENTER(3) ,SCRTCH(45),

& COOR(3075) ! Good for NPERRG < 1025

COMMON /POS/ RNODE

COMMON /RING/ NPERRG, NRIN4GS NNODES .NSTART, MEND

NPTH - 0

C * Plot a small sphere to mark the origin.

CALL COLOR (0)

RHO =0.1

NVSEC = 4

NHSEC - 4
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IPTS - 15

MODE - 0

CALL SPHERE (CENTER.RHO, NVSEC ,NHSEC,SCRTCH, IPTS .MODE)

C * Draw NRINGS rings with NPERRG nodes.

CALL COLOR(4)

DO 100 NR-1,NRINGS

C * * Assign node positions to plotting array.

I-I

NSN - NSTART(NR)

NEN - NEND(NR)

DO 110 J-NSNNEN

COOR(I) - RNODE(1,J)

COOR(I+I) - RNODE(2,J)

COOR(I+2) - RNODE(3,J)

I=I+3

110 CONTINUE

COOR(I) - RNODE(I,NSN)

COOR(I+1) - RNODE(2.NSN)

COOR(I+2) - RNODE(3,NSN)

C * * Draw ring(s).

NPTS = NPERRG + I

CALL DRAW3D(COOR,NPTS,2,2)

100 CONTINUE

CALL FRAME

RETURN

END

subroutine runge(Delt .DeltO2, NNodeu .NPerRg,CamJet, Center)
CC CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C FUNCTION:

C This subroutine (SUBROUTINE RUNGE) calls SUBROUTINE INDVEL

C to calculate the filament-node velocity induced by the

C filaments in the flow field. The node positions at the end

C of the time step are caluculated by 2nd order Runge-Kutta.

C

C READ-ONLY PARAMeTERS:

C Delt -> time step

C Delt02 -> half of a time step

C NNodes -> total number of nodes in simulation

C NPerRg -> number of nodes per ring

C CamJet -> circulation of Jet function
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C Center -> current position of center of jet exit

CIC AUTHOR:
C David Parekh (July 1983; revised: July 1984)IC
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

dimension RNodeC3,5000) ,RNewC3,5000) ,RRef(3) ,CenterC3).3 & VelIndC3,5000) ,VelJetC3.5000) ,VelRef (3) ,CRad2(500)

common /POS/ RNode

common /CORE/ CRad2IC * Predict using the Euler method.
C * * Calculate node velocities due to mutual induction.

call indvel CRNode ,VelImd)IC * * Calculate node velocities due to jet function.

do 10 N = 1,NNodes

RRef Ci) - RNode(1,N)I~f2 Roe2N
RRef (2) - RNode(2,N)3 Index = M( - 1) / NPerRg) + 1

CRef 2 - CRad2 (Index)

call jetvel(GamJet,RRefCRef2.Center,VelRef)I VelJet(1.N) - VelRef(l)
VelJet(2,N) - VelRef (2)

VelJetC3,N) = VelRefC3)I10 continue
do 100 N - 1,NNodes

RNew(1,N) = RNode(i,N) + (DeltO2 * (VelInd(1,N) + VelJet(1,N)))3~w2N ~d(,)+(et2*(e~d2N e~t2N)
Rffew(2,N) - RNodeC2.N) + (Delt02 * (VelInd(2,N) + VelJetC2,N)))3 100 continue

C * Correct using the midpoint rule.

C * * Calculate node velocities due to mutual induction.3 call indvel(RNew,VelInd)
C * * Calculate node velocities due to jet function.

do 20 N - 1,NNodesI RRef(1) - RNew(1.N)

RRef (2) -RNew(2,N)

RRef (3) -Rflew (3, N)

Index - M( - 1) / NPerRg) + I

CRef 2 = CRad2(Index)3 call jetvel(GamJet,RRef.CRef2,Center.VelRef)

VelJet(1,N) -VelRef(1)3 VelJet(2,N) -VelRef (2)
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VelJet(3,N) - VelRef(3)

20 continue

do 200 N - 1,NNodes

RNode(1,N) - RNode(iN) + (Delt * (VelInd(lN) + VelJet(1,N)))

RNode(2.N) - RNode(2.N) + (Delt * (VelInd(2,N) + VelJet(2.N)))

RNode(3,N) = RNode(3,N) + (Delt * (VelInd(3,N) + VelJet(3.N)))

200 continue

return

end

subroutine indvel(RNode. VelInd)

CCCCCCC CCCcCCcCccCccCccCCcccccccccccccCCccccccccccccccccccccccCcccccccc

C

C FUNCTION:

C This subroutine (SUBROUTINE INDVEL) calculates the filament-

C node velocity induced by the vortex filaments in the flow

C field. The segments joining each pair of nodes is a straight

C line. The vorticity is distributed about the filament as

C specified by a spherically symmetric polynomial. The nodes

C are grouped in rings. The innermost loop calculates the

C velocity induced by a particular segment.

C

C READ-ONLY PARAMETERS:

C RNode -> the coordinates of each node

C WRITE-ONLY PARAMETERS:

C VelInd -> the node velocities induced by the filaments

C

C AUTHORS:

C David Parekh & Tony Leonard (July 1983; revised: July 1984)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C * Dimension variables and define common block.

dimension VelInd(3,5000).RNode(3.5000),CRad2(500),

& Gamma (500),NStart (500),NEnd(500),

& DR(3), RDif (3),RDfXDR(3)

common /CORE/ CRad2

common /PARM/ GammaAlpha.Coef

common /RING/ NPerRg,NRings. NNodes. NStartNEnd

C * Initialize velocity vector.

do 100 N = 1,NNodes

VelInd(1,N) - 0.0
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Ie~d2N .
Vellnd(2,N) - 0.0

I 100 continue
C *Calculate the induced velocities by salving the Biot-Savart integral.

do 200 NR - 1,NRings

Gam - GammaCNR)

NTail =NEnd(NR)

CNR2 =CRad2(NR)

do 210 NHead - NStart(NR),NEnd(NR)

DR(1 - RNode(i,NHead) - RNode(1,NTail)

DR(2) = RNodeC2,Nllead) - RNode(2,NTail)

DR(3 - RNodeC3.NHead) - RNodeC3,NTail)

do 211 N - 1,NNodes

RDif Cl) - RNode(1,N) - RNode(l,NTail)

RDif (2) = R11odeC2,N) - RNode(2,NTail)

RDif (3) = RNode(3,N) - RNode(3,NTail)

RDif2 - (RDif~l) * RDif(l) + (RDif(2) *RDifC2)) +

(RDifC(3) * RDifC(3))

DR2 - CDRCI) * DRC1) + CDR(2) * DRC2)) + (DR(3) *DRC3))

RDifDR (RDif Cl) * DRC1) + (RDif (2) * DR(2)) +

(RDifC3) * DR(3))

Index M ( - 1) / NPerRg) + 1

BSDen =RDif 2 + (Alpha * CCNR2 + CRad2Clndex)))

C1 - (BSDen + DR2) - RDifDR + RDi!DR)

C2 -((DR2-RDifDR) / qrtCCl)) + (RDifDR / sqrtCBSDen))

C3 - C2 / ((R2 * BSDen) - (RDifDR * RDifDR))

RDfXDR(1) = CRDifC2) * DR(3)) - (RDif(3) * DR(2))

RDfXDRC2) - (RDifC3) * DR(l)) - (RDif Cl) * DRC3))

RDfXDR(3) - CRDif(1) * DR(2)) - (RDifC2) * DR.(I))

VelInd~l,N) - VelInd(l,N) + (C3 * Gam * RDfXDR~l))

VelInd(2,N) - VelIndC2,N) + (C3 * Gam * RDfXDR(2))

VelInd(3.N) -VelIndC3,N) + (C3 * Gain * RDfXDRC3))

211 continue

NTail - NHead

210 continue

200 continue

do 300 N - 1,NNodes

VelInd(1,11) - Coef * VelInd(l.N)

VelInld(2,N) - Coef * VelInd(2,N)

VellIad(3,N) - Coef * VelInd(3,N)

300 continue

return

end



subroutine j etvel (GamJet ,RRef.Core2 C-nter, VeiRef)

cccCCCcccccucccccuccccccccccccccccccccccccCccccccccCCcccccc
C

C This subroutine (SUBROUTINE JETVEL) cailculates the velocity

C induced at the point (R.Z) by a semi-infinite shoet of

C vorticity. Analytical expressions (FUNCTION RVFUNC and

C FUN!CTION ZVFUNC) for the velocity field of a semi-infinite

C sheet of vorticity are used.

C

ccCcccCcCcccccccccCccccccccccccccccccccccccccccCCCCCcccCcccccCccccCCc

dimension RRef (3) ,VELREF (3) .CenterC3)

real Mu,Nu

C * Assign values of distribution factor, and core radius squared

C of vortex sheet.

DATA &TPHA.SIGMA2 /0.2065,0.01/

C * Transform position vector RREF to RVFUNC-&-ZVFUNC coordinates.

X - RREFC2) - CENTERM2

Y -RREFC(3) - CENTER(3)

R - SQRTCCX*X) + (YsY))

Z - RREFC1) - CENTERCI)
C *Calcualte velocity function arguments.

RHO - 1. + CR *R) + (ALPHA * CSIGMA2 + CORE2))

NU - RHO + (Z *Z)

MU - 2. * (R/RHO)

ETA -2. * (R/NU)

C *Calculate the induced velocity.

RVEL - RVFUNCCNU.ETA.GAI4JET)

ZVEL - ZVFUNC(R.Z.RHO.MUNU,ETA.GAMJET)

VELREF(1 - ZVEL

VELREF(2) - (X * CRVEL/R))

VELREF(3) - (Y * CRVEL/R))

RETURN

END

FUNCTION RYFUNC(NU,ETA.GA4)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C This function computes the r-component of velocity.

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL I.NU

COMMON /MANYPI/ HALFPI,PI,TEOPI
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U COEF - GAM4 / (2. *PI1 SQRT(NU))
IF(ETA.GT.0.O5)THEN

RVFUNC - COEF * ICETA)U ELSE
RVFUNC = COEF *T(O.,ETA)3 END IF

RETURN

END

FUNCTION ZVFUNIC(R,Z,RHO,MU,NU.ETA.GAN)I CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

C This function computes the z-component of velocity.I C
cCccCCccccCcccccccCcCcCCccccccCCcccccccccccccCCCccccccccc

REAL K,M1,MUNUI COMMON /MANYPI/ HALFPI,PI,TWOPI

MI = (1. -ETA) / 0. + ETA)3COEF = AM /(TWOPI *RHO)

A - HALFPI M (2. -RHO) /SQRT(l. - MU*MIJ)) + RHO)

BI - (2./SQRTCI. + ETA)) *K(M1)I B2 - (MU - R) * TCMU,ETA)
ZVFUNC - COEF * CA - ((Z/SQRT(NU)) * (BI + B2)))

RETURN

END

U FUNCTION T(MU.ETA)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C This function calculates the value of the Terry function for

C specified values of MU and ETA by means of the a 4-panel

UC Newton-Cotes scheme (SUBROUTINE DNC4). N is a parameter of
C DNC4.

CI CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
REAL MU

COMMON /TERRY/ TMU,TETA

COMMON /MANYPI/ HAiP1,PI.rWOPI
EXTERNAL ThI3 TMU =MU

TETA =ETA
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N - 3. +(6.*MU) + (3.*ETA)

T - DNC4(TFI,0. ,PI,N)

RETURN

END

FUNCTION TFI(PHI)

C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc

C

C This subroutine defines the Terry function integraid.

C

uccCCeCCCCCCCC ;"AccuCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL MU

COMMON /TERRY/ TMUTETA

COSPHI - COS(PHI)

TFI - COSPHI / ((1.D0 - TMU*COSPHI)

& SQRT(l.DO - TETA*COSPHI))

RETURN

END

FUNCTION DNC4CTFI,A.B,N)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C This subroutine integrates the function TFI from A to B by

C a modified 4-panel Newton-Cotes scheme. The points where TFI

C is evaluated were chosen to give the greatest resolution at

C the ends of the intervals. N is the initial step size

C criterion, where HO - CB-A)/(2**N) and N > 2.

C

C Written by: David Parekh

C Date: August 1983

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccceCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C * Calculate initial step size and loop parameter.

EXP - N

FRAC - 2.**EXP

HO - CB-A)/FRAC

IEND - N - 3

C * Integrate using a modified 4-panel Newton-Cotes formula.

C * * Integrate first subinterval.

H - HO

PHIl - A
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1

PHI2 - PHIl + H

PHI3 - PHI2 + HUPHI4 - PHI3 + H

PHI5 PHI4 + H

3 TFI5 = TFI(PHI5)

SUM (H/22.5) * (7.*TFI(PHII) + 32.*TFI(PHI2) +

k 12.*TFI(PHI3) + 32.*TFI(PHI4) + 7.*TFI5)3 C * * Integrate the rest of the first half of the interval,

C doubling H every subinterval.

DO 10 I=1,IEND

TFI1 = TFI5

PHIl = PHIS

PHI2 - PHI1 + H

PHI3 = PHI2 + H

PHI4 = PHI3 + H

PHIS - PHI4 + H

TFI5 - TFI(PHI5)

SUM - SUM + ((H/22.5) * (7.*TFII +3 k 32.*TFI(PHI2) + 12.*TFI(PHI3) +

& 32.*TFI(PHI4) + 7.*TFI5))

H = 2.*H

10 CONTINUE

C * * Integrate the last subinterval.

H - HO

PHIS - B

PHI4 - PHIS - H

PHI3 - PHI4 - H

PH12 - PH13 - H
PHI2 = PHI2 - H

TFI1 = TFI(PHI1)

SUM - SUN + ((H/22.5) * (7.*TFII +

k 32.*TFICPHI2) + 12.*TFICPHI3) +3 & 32.*TFI(PHI4) + 7.*TFI(PHIS)))

C * * Integrate the rest of the last half of the interval.

DO 20 I=I,IEND

TFIS - TFI1
PHI5 - PHIl

PHI4 PHIS - H

PHI3 - PHI4 - H

PHI2 - PHI3 - H

PHIl - PHI2 - H

TFIl - TFI(PHI1)gSUM = SUM + ((H/22.6) * (7.*TFII +
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A32.*TFI(PHI2) + 12.*TFI(PHI3) +I

& 32.*TFI(PHI4) +7.*TP'15))

H - 2.*H

20 CONTINUE

DNC4 - SUM

RETURN5
END

REAL FUNCTION ICETA)

cccccccccCCcccCccCccCccccccCccCccccccccCccccccccccCcccccCCccccc I
C

C This function is a combination of the elliptic integrals K k E.

CI

REAL K, I4

MI - 0l. -ETA) /(I. + ETA)I
COEF - 2. /(ETA *SQRTCETA + 1.))

I - COEF (K(Ml) M C. + ETA) * E(M)

RETURNI
END

REAL FUNCTION K(Ml)

C

C This function in a polynomial approximation of the complete

C elliptic integral of the first kind (from HMF 17.3.33) with

C e~ini) < 3E-5.

C

REAL MI

DATA AO, Al. A2 /1.3862944, 0.1119723. 0.0725296/

DATA BO, Bl, B2 /0.5, 0.1213478, 0.0288729/
K - CAO+CMl*(Al+(Ml*A,2)))) +((BO+(Ml*CBI+CM1*B2))))*ALOGC1./M1))

RETURN3
END

FUNCTION ENO)

C3
C This function is a polynomial approximation of the complete
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1
I

C elliptic integral of the second kind (from HMF 17.3.35) with

C e(ml) < 4E-5.

C

CCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL M1,M12

DATA Al, A2 /0.4630151, 0.1077812/

DATA B1, B2 /0.2452727, 0.0412496/3 E - (1.+(MI*(AI+(MI*A2)))) + ((M1*(BI+(M1*B2)))*ALOG(1./M1))

RETURN

END

3 B.2 AXLAYER

C'

C AXISYMMETRIC RINGS

C3 C This program uses analytical expressions to calcualte

C the motion of axisymmetric, incompressible, inviscid

C vortex rings. The boundary condition at the location of

C creation of the rings is imposed by a jet function. The jet

C function specifies the velocity field induced by a semi-

C infinite axisymmetric sheet of vorticity.

C
C Output: Unit 10

C

C Written by: David Parekh

C Date: September 1984

C~ *

C *Define logical variables, common blocks and output unit.3 logical Image,CorCon

common /JET/ ALPHA, GamJet, Cr2Jet

common /PARM/ Sigma2(t 000) .... (lOO).CamI(l000)

common /POS/ RPos(1000),ZPos(1000),RPosI(1000),ZPosI(1000)

common /RING/ GamRng, CORE, RAD, VOLUME

open(unit=lOfilef'RESULTS')

C Specify constants and parameters.

Image - TRUE. ! specifies whether images are to be included3 CorCon = TRUE. specifies whether cores are constant in time

GAMJ = 1.0 I nominal circulation/length of jet

RAD 1.0 ! nominal radius of rings
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U

CORE - 0.1 1 nominal core radius of rings I
STNUM - 0.4 1 Strouhal number based on axial frequency

NSTEPS - 400 total number of time steps in simulation I
PRDA - 100. ! period of axial excitation in DELT units

PRDF - 10. ! period of filament generation in DELT units

AXAMP - 0.2 amplitude of axial excitation / GAMJ I
IOUT S time steps between calls to "output"

NEWVTX - PRDF time steps between calls to "genRng"

call initJet

Ex.Fac - 1. + (AXAMP**2) / 2 I excitation factor

AxFreq - 4 * asin(l.) / PRDA I axial frequency (rad / step) 5
FPerA - PRDA / PRDF ! filaments per axial period

VDelT - 2 / (GAMJ * FPerA * STNUM) ! time between ring creations

DelT - VDelT / PRDF I time step of simulation

DelTO2 - DelT / 2

GamDot - GAMJ**2 / 2 I nominal circulation flux rate

CIRC - ExFac * VDelT * GamDot I nominal circulation of rings

VOLUME - RAD * CORE**2 ! nominal volume of rings

Coefl = 2 * AXAMP * DelT / AxFreq

Coef2 = AXAMP / 8

C *Initialize counters.

INewV - NEWVTX 3
Ith = IOUT

NRings = 0

Time - 0.0

C *Print output header.

write(lO,100) CIRCRAD,CORE.GAMJ,AXAMP,STNUM,DelTFPerA

if (Image) then

write(10,110)

else 3
write(10,120)

end if

C * Carry out simulation for NSTEPS time steps. 3
do 1000 IStep = I,NSTEPS

C * * Calculate instantaneous circulations of jet and filament.

C PhiO - AXFREQ * (IStep - 1)

C Phil - PhiO + AXFREQ * PRDF

C GamJet - (I. - AXAMP * cos(PhiO)) * GAMJ

C GamRng - GamDot * (ExFac * VDelT + Coefl *

C k (Coef2 * (sin(2 * Phil) - sin(2 * PhiO))

C & (sin(Phil) - sin(PhiO))))

Gamiet - (1. - AXAMP * cos(AXFREQ * (IStep - 1))) * GAMJ

C * * Generate a new vortex ring as specified.
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if (ItewV.eq.NEWVTX) then

call genRng(Inage. INewV,NRings)IPhi0 AXFREQ * (IStep - 1)
end if5 RelStp =INewV + I

Phil = PhiO + AXFREQ * RelStp

Gam(NRiigs) = GamDot * (ExFac * DelT * RelStp + Coef 13 & CCoef2 * (sin(2 * Phil) - sinC2 * PhiO))-

& (ain(Phil) - sin(PhiO)

GamI(NRings) = -Gam(NRings)IC * * Print ring positions as specified.
if (Ith.eq.IOUT) call output(NRings.Time,Ith)

C * * Update node positions by 2nd order Runge-Kutta.I call runKut(NRings,DelTDelT02,CorCon,Image)

C * * Increment counters at end of tine step.

INewV -INewV + 1

Ith =Ith + 1
Time =Time + DelT3 1000 continue

C -Write final coordinates of rings.

GamJet = (. - AXAMP * cosCAXFREQ * IStep)) * GAMJIC if CINewV.eq.NEWVTX) call genRng(Image,INewV,NRings)
if CINewV.eq.NEWVTX) then

call genRng (Image, INewV.NRings)

PhiO AXFREQ * (IStep - 1)

end if

RelStp =INewV + I

Phil = PhiO + AXFREQ * RelStp

Gam(IlRings) - GamDot * CExFac * DelT * RelStp + Coef 1

k (Coef2 * Csin(2 * Phil) - sinC2 * PhiO))-

& (sin(Phil) - sin(PhiO)

GamI(I[Rings) = -Gan(flRings)

call output (TRings ,Time, Ith)

close (10)

C 1 /0 formats.

100 format(lx, Circulation =*tl7,f7.4./,

& lx,2Ring Radius = .t17,f6.2,/,

& lx,'Core Radius =.,tlg,f6.4,//.

& lx,'Jet Circulation -'.t20,f8.4./,

A lx,'Axial Excitation =',t20.fO.4,//,

& lx, 'Strouhal Number -',t20,f8.4,/,

k lx, 'Time Step - ,t21,f8.5,//,

& lx,'Filaments per Pulse -',t23,f5.0,//I)
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U

110 format(1x.'*** Images included in simulation ***'.///) I
120 format(lx,'*** Images not used in simulation ***,///)

stop 3
end U
subroutine genRng(Image, INewV,NRings)

CCCcccccc CCCCccCccCCCcccccccCcCCcccccccccccCcccccccccccccccCCcccCCCCC I

CU
C This subroutine (SUBROUTINE CENRNG) specifies the coordinate

C of the center of the newly generated vortex ring and assigns

C the circulation and core radius of the new ring.

C

cccccccccCccccCCCCccc CCCCCCcCCcCCCCCccCcccCcCCCCCcccccccCcCcccCccCCccccc I
C * Define variables and common blocks.

logical Image

common /PARM/ Sigma2(lOOO).Gam(1000),Sig2I(1OOO),GamI(lO00)

common /POS/ RPos(1000),ZPos(I000),RPosI(IOOO),ZPosI(i000)

common /RING/ GamRng, CORE, RAD, VOLUME

C * Initialize and increment counters.

INewV - 0

URings = NRings + I 3
C * Specify ring parameters.

RPos(NRings) = RAD

ZPos(NRings) = 0.0 + CORE a

C Gam(NRings) = GamRng

Sigma2(NRings) - CORE**2 I
C Specify image ring if required.

if (Image) then

RPosI(NRings) - RAD

ZPosI(NRings) - 0.0 - CORE I
C GamI(NRings) - -GamRng

Sig21(Rings) - CORE**2 3
end if

return

end 3

subroutine output(NRings,Time,Ith) 3
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C This subroutine (SUBROUTINE OUTPUT) writes the coordinates of

C the centers of the vortex rings and their radii to UNIT 10
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IC every IOUTth time step.

C

CccccCcccCccccccccccccccccccccCCCcCCcCcC~CCCccCeCCCCcccccccccCccCI C *Define variables and common blocks.

common /JET/ ALPHA, GamJet, Cr2Jet5 common /PARM/ Sigma2(1000) ,Gam(1000) ,Sig2I(1000),CamI(lOOO)

common /POS/ RPos(1000) ,ZPos(1000) ,RPosI(1000) ,ZPosI(1000)

C Reset counter.3 ITH = 0

C Write results.

Write(10,200) Time,GamJet,sqrt(Cr2Jet)I 'Write (10,.201)
Write(10,202) (J,RPos(J),ZPos(J),sqrtCSigma2(J)),Gam(J),

3 & e1,23 J-1,NRINGS)

C *Format statements.3200) Format(lX, 'TIME - 'F.,/

& Ix, CAMJET -',F7.3,/.

k lx,'CORE OF JET = ',F1O.5./)3 201 Format(lX. ' RIN!G',8X. 'RADIUS' ,12X, 'Z' ,12x, 'CORE RADIUS'.

a 6x, 'CIRCULATION' .1/)
202 Format(1X.I5,SX,FIO.5,SX,FI0.5, 1OX.F1O.5, 10x,FIO.5)I 203 Format(IXA/

return3 end

subroutine runKut(UIRings,DelT,DelTO2,CorCon,Image)U CCCcCCCQCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

5C This subroutine (SUBROUTINE RUNKUT) calls SUBROUTINE VELOCITY

C to calculate the induced velocity at a particular node point

C and calculates the node positions at the next time step byIC 2nd order Runge-Kutta.

C - Dimension variables and define common block.

logical ImageCorCon

dimension RRunge(1000), ZRunge (1000)

common /POSI RPos(i000) ZPojs(1000) .RPosIC1000) .ZPosI(1000)
comimon /VEL/ RVel(1000), ZVel(1000)3C * PrTedict using the Euler method.

call velocity(I;Rings.Image)
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do 100 NR - I,NRings

RRungeCNR) - DelTO2 * RVel(NR)

ZRunge(NR) - DelTO2 * ZVelCNR)

RPos(NR) -RPos(NR) + RRunge(NR)

ZPos(NR) - ZPos(NR) + ZRunge(NR)

100 continue

if (Image) then

do 110 NR - 1,NRings

RPosI(NR) - RPos(NR)

ZPosI(NR) - -ZPos(NR)

110 continue

end if

if C.not.CorCon) call newCoreCNRings.Image)

C * Correct using the midpoint rule.

call velocity (NRings, Image)

do 200 NR - INRings

RRungeCNR) -DelT * RVelCNR) - RRungeCNR)

ZRungeCNR) - DolT * ZVelCNR) - Zftunge(NR)

RPos(NR) - RPosCNR) + RRunge(NR)

ZPos(NR) = ZPos(NR) + ZRunge(NR)

200 continue

if (Image) then

do 210 NR = l,NRings

RPosI(NR) - RPosCNR)

ZPosI(NR) - -ZPos(NR)

210 continue

end if

if (.not .CorCon) call newCore(CURings, Image)

return

end

subroutine velocity(Nlings, Image)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C FUNCTION:

C To calculate the velocity and stretching of rings due to

C the influence of the rings and the sheet of vorticity.

C The influence of image rings are included as specified.

C

C AUTHOR:

C David Parekh (October 1984)

C
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3 logical Image
comfron /PARIM/ Sigrna2(I000) .Cam(1000) .Sig2I(1OOO) ,GamI(lOOO)

common /POS/ RPos(1000) ZPos(1000) ,RPosI(1000) ,ZPosI(1000)I common /VEL/ RVel(1000), ZVelC1000)

C *Calculate velocities induced by jet.5 do 100 NR =1.NRings

call jetVel(RPos(NIR) ,ZPos(NiR) ,Sigma2(NR),RVe1(NR),ZVe1(NR))

100 continueU C *Calculate velocities induced by other rings.

do 200 NR =1,NRings

do 210 IR = 1,NRingsI Z~if = ZPos(IR) - ZPosCNR)
call rngVel(RUoin(,R) Gam(NIR) .Sigrna2(NR) ,RPosCIR) ,ZDif,

& Sigma2(IR) ,VelInR.VelInZ)I~lI)=RelI)+Vln
RVel(IR) = ZVel(IR) + VelInR

3210 continue

if (Image) then

do 220 IR =1,NRingsI Z~if -ZPos(IR) - ZPosI(NR)
call rngVel(RPosICNR) ,GamICNR) ,Sig2ICNR) ,RPosCIR) ,ZDif,

& Sigma2(IR) ,VelInR.VelInZ)I RVel(IR) = RVelCIR) + VelInR
ZVelCIR) = ZVel(IR) + VelInZ

220 continueI end if
200 continue3 return

end

subroutine newCore(CNRings Image)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCI C
C FUNCTION:

C To calculate the core size of the rings based on conservationIC of volume constraints.

C3C AUTHOR:
C David Parekh (September 1984)

C



ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc I

C *Define variables and common blocks.

logical Image

common /PARN/ Sigma2(1000),Gam(1000).Sig2I(1OOO),GamI(1000)

common /POS/ RPos(1000),ZPos(1000),RPosI(1000),ZPosI(1000)

common /RING/ GamRng, CORE, RAD, VOLUME

C * Calculate new core sizes.

do 100 NR = 1,NRings

Sigma2(NR) - VOLUME / RPos(NR)

100 continue

if (Image) then

do 110 NR - 1,NRings

Sig §(CR) = Sigma2(NR)

110 continue

end if

return

end

subroutine rngVel(RadRng.GamRng,Cr2Rng,R,Z,Core2, RVel,ZVel)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C FUNCTION:

C To calculate the velocity induced by a circular vortex ring

C at a particular field point.

C

C READ-ONLY PARAMETERS:

C RadRng -> radius of vortex ring

C GamRng -> circulation of vortex ring

C Cr2Rng -> square of radius of vortex core

C R -> r-coordinate of field point

C Z -> z-coordinate of field point

C Core2 -> square of vortex core associated with field point

C

C WRITE-ONLY PARAMETERS:

C RVei -> r-component of velocity induced by ring

C ZVel -> z-component of velocity induced by ring

C

C NOTES:

C 1. If the field point is in zero-vorticity fluid, Core2

C should be equal to Cr2Rng.

C

C 2. The calculated velocities may be considered to be
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I

C non-dimensionalized by nominal circulation and ring-radius

C parameters, each having a value of unity.

C

C 3. Subroutine "initJet" should be called once prior to the

C first call of this subroutine.

C

C AUTHOR:

C David Parekh (September 1984)

C

CCccccCCCCCCCccCCCCCcccccccccccCcCccccCcCCCCCCCCCCCCCCccCCcccccccCCCC

C * Define common block.

common /KE/ AO, Al, A2, BO, BI, B2, C1, C2, D1, D2

common /MANYPI/ HALFPI, PI, TWOPI

C * Define elliptic integral functions.

RK(RM1) = (AO + (RMI * (Al + (RM1 * A2)))) +

((HO + (RMI * (B1 + (RMI * B2)))) * ALOG(I. / RMi))

E(RM1) = (I. + (RMI * (Cl + (Il * C2)))) +

k ((11 * (Dl + (RMI * D2))) * ALOG(l. / RMI))

C * Define constants.

data ALPHA /0.2065/

C * Calculate parameters.

M~ar = R / RadRng
ZBar - Z / RadRng
RNu - 1. + ZBar**2 + RBar**2 + ALPHA * (Cr2Rng+Core2) / RadRng**2
Eta = 2 * R~ar / RNu

RM1 = (. - Eta) / (1. + Eta)

C * Calculate velocity components.

if (R.ne.O.O) then

RVel = GamRng * ZBar * (E(RMl) / (1. - Eta) - RK(RMl)) /
& (TWOPI * R * sqrt(RNu + 2 * R~ar))
else

RVel = 0.0

*end if

ZVel = (E(RIA1) * (1. - RNu / 2) / (1. - Eta) + RK(RMI) * RNu / 2)

& * GamRng / (PI * RadRng * RNu**l.5 * sqrt(1. + Eta))I return

end

I
I
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sCCCubroutine jetVel (. ZCore2, RJtVel.ZJtVe)

ccccccccccccccccccccccccccCCcccccccccccccccccccccccccccccccccccc
C

C FUNCTION:

C To calculate the velocity induced at the poi.nt (R.Z) by a

C semi-infinite axisymmetric sheet of vorticity. Analytical

C expressions (function rVFunc and function zVFunc) f or the

induiced velocity field are used.

C

C READ-ONLY PARAMETERS:

C R -> r-coordinate of field point

C Z -> z-coordinate of field point

C Core2 -> square of core radius associated with field point

C

C WRITE-ONLY PARAMETERS:

C RJtVel >r-component of induced velocity

C ZJtVel ->z-component of induced velocity

C

C NOTES:

C i. If the field point coincides with zero-vorticity fluid,

C the parameter Core2 should be set to Cr2Jet, which is

C specified by subroutine initJet.

C

C 2. The length variables are nondiiaensionalized by the jet

C radius which is assumed to have a value of unity.

C

C 3. Subroutine initJet must be called once prior to the first

C call of this subroutine.

C

C AUTHOR:

C David Parekh (September 1984)

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCC

C * Define common blocks.

common /JET/ ALPHA. GamJet, Cr2Jet

common IKE! AO, Al, A2, BO, B1. B2, Cl. C2, Dl, D2

c mmon /NANYPI/ HALFPI, PI, T1EOPI

C * Define elliptic integral functions.

rKCRMl) -(A0 + (RM1 * (Al + (R141 * A2)))) +

& ((B0 + (RMl * (Bi + (R141 * B2)))) * alog(l. /R141))
EtCN1) (I. + MRI * (C + (1u41 * C2)))) +

a ((RM1 *(Dl + (RMI D2))) * alog(l. / R.MI)

rI(RM1,Eta) -2 *(rK(RMl) -(I. + Eta) * E(RMI1))/
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I
& (Eta * sqrt(l. + Eta))

C *Calcualte velocity function arguments.

Rho = 1. + R**2 + ALPHA * (Cr2Jet + Core2)

RNu = Rho + Z**2

RMu = 2 * R / Rho
Eta = 2 * R / RNu

RM1 = (1. Eta) / (1. + Eta)

C * Calculate velocity components.

Gam = 2 * GamJet

if (Eta.gt.O.05) then

RJtVel - Gam * rI(RMl,Eta) / (TWOPI * sqrt(RNu))

else

RJtVel = Cam * Teri(O.O.Eta) / (TWOPI * sqrt(RNu))

I end if

ZJtVel - (HALFPI * (Rho + (2. - Rho) / sqrt(l. - RMu**2)) -

I (2 * rK(RMI) / sqrt(l. + Eta) +I & (RMu - R) * Teri(RMu,Eta)) * Z / sqrt(RNu)) *

k Gam / (TWOPI * Rho)

return

end

I subroutine initJet

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCIC
C FUNCTION:

C To initialize various constants and arrays used by subroutine

C jetVel and by the functions jetVel calls.

C

C AUTHOR:

C David Parekh (September 1984)

C3 ~ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C * Define common blocks.

common /JET/ ALPHA, GamJet, Cr2Jet

common /KE/ AO, Al, A2, BO, Bi, B2, Cl, C2, Dl, D2

common /MANYPI/ HALFPI, PI, TWOPI

C * Set values of constants and variables.

data ALPHA /0.2065/

data AO, Al. A2 /1.3862944, 0.1119723, 0.0725296/

data BO, B1, 82 /0.5, 0.1213478, 0.0288729/

data Cl, C2, Dl, D2 /0.4630151, 0.1077812, 0.2452727, 0 0412496/

HALFPI = asin(l.) 1I1 115
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PI - 2 * HALFPI 1

TWOPI " 2 * PI

Cr2Jet - 0.1*-2 3
C * Initialize Teri function arrays.

call initTF

return

end I
subroutine initTF

CCCCCCCCCCCCCCCCCCCCCCCC 'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC I
C

C FUNCTION:

C To initialize various arrays used by function Teri.

C

C AUTHOR:

C David Parekh (September 1984)

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC1

C * Dimension variables and define common block.

dimension CoefNC(0:6)

common /TF/ TCoef(55,8),CosPhi(55,8).NOrder,NPanel 3
C * Initialize constants.

data NOrderNPanel /8,6/

PI - 2 * asin(l.)

CoefNC(O) - 41. / 840.

CoefNC(1) 216. / 840.

CoefNC(2) - 27. / 840.I

CoefNC(3) - 272. / 840.

CoefNC(4) - CoefNC(2)

CoefNC(5) - CoefNC(2) 1
CoefNC(6) - CoefNC(0)

C * Calculate coefficient and cosine arrays used by function Teri.

do 100 N - 1.NOrder

C * * Initialize counters and arguments.

M-0 I
Ang - 0.

DelAng - (PI / 2**N)

DelPhi - DelAng / NPanel I
C * Set first set of values.

do 110 NC - ONPanel 3
M - M+ I

Phi = Ang + NC * DelPhi 116
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I TCoef(M,N) - CoefNC(NC) * DelAng

CosPhi(M,N) = cos(Phi)

110 continue

C * * Set rest of the values.

do 120 int = NI,-i

C * * * Update subinterval sizes.

Ang = Ang + DelAng

DelAng - PI / 2**Int

DelPhi = DelAng / NPanel

C * * * Handle case of a point shared by adjacent subintervals.

TCoef(MN) = TCoef(M,N) + CoefNC(O) * DelAng
C * * * Set values at points in current subinterval.

do 121 NC - 1,NPanel

3 M=M+ I

Phi = Ang + NC * DelPhi

TCoef(M,N) = CoefNC(NC) * DelAng

CosPhi(MN) cos(Phf)

121 continue

120 continue

100 continue

return

5end

3 function Teri(TMu,TEta)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C FUNCTION:

C To evaluate the Teri function at the specified values of

C TMu and TEta.

C
C READ-ONLY PARPA4ETERS:

C Thu, TEta -> arguments of the Teri function

C

C NOTES:

C 1. A semi-adaptive quadrature scheme based on n-panel

C Newton-Cotes is used to evaluate the Teri function.

C

C 2. Subroutine initTF must be called to initialize various

C arrays prior to the first call to this routine.

C

C AUTHOR:

C David Parekh (September 1984)
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCuCCCCCCCCCCCCCCCCCCCCCC U
C * Define common block.

common /TF/ TCoef(55,8),CosPhi(55,8),NOrder,NPanel

C * Initialize variables.

Teri - 0I

NumInt - 1.0 + NOrder * amaxi(TMuTEta) !subintervals in 1st half

IEnd - (NumInt + 1) * NPanel + I !number of points in interval

C * Evaluate Teri function by quadrature.

do 1 1-,IEnd

Teri - Teri + (TCoef(INumInt) * CosPhi(I,NumInt)) / 1
& ((I. - TMu * CosPhi(I,NumInt)) *

Scsqrt(l. - TEta * CosPhi(I,NumInt)))1continue1

return

end

B.3 SIVSPLI.NE

C VORTEX RING SPEED

C This program uses a spline technique. ouI

C the self-induced velocity of an axisymmetric, inviscid

C vortex ring. The calculated speed is compared with the

C theoretical approximation of the self-induced velocity of

C an inviscid ring with a Gaussian core.

C (For best match of velocities, use ALPHA - 0.2065) 3
C

C Input: Unit 5

C Output: Unit 6 (program prompts)

C

C Written by: David Parekhi

C Date: August 1984

C

C * Dimension variables and define common blocks.

implicit real*8 (a-h,o-z)

dimension VelInd(3),RRef(3).RNode(3,10000)

common /POS/ RNode

common /PARM/ Gamma,NodesALPHACOEF
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IC * Specify constants and parameters and initialize variables.

data VCONST /O.558d0/I PI = 2.dO * dasin~lidO)

TOOPI =2.dO *PI

COEF =-idO / 4do * PI)IC * Specify ring coordinates.
C * * Specify geometry and circulation of ring.

write(6,999)I999 format(1x,'enter:',/.1x,'nodes, core, rad, gamma, alpha',/)

read(5,*)Nodes,CoreRad,Gamma,Alpha

C * * Generate ring.

Core2 - Core * Core

call genrng(T WOPI,Rad,Nodes,Core2)3C * Calculate self-induced velocity by spline approximation.

PRef Cl) - R11ode(lI.)

RRef (2) - R11ode (2, 1)U RRef(3) - RNode(3,I)
call splvel (RRef .Core2 ,VelInd)

VelMg2 - (VelInd(l) * VelInd(l)) + (VelInd(2) * VelIndC2)) +I & (VelInd(3) * VelInd(3))

VelMag - doqrtCVelMg2)

C *Calculate theoretical value of self-induced velocity.

Fadl Gamma / (4dO * PI * Rad)
Fac2 = dlog(8.dO * Rad ICore) -VCONST3 SIVel - Fadl * Fac2

Error - VelMag - SIVel

PerErr = (dabaCError) /SIVel) *100.dOI C *Write results.
write(6,996)

write(6,*) (VelInd(K), K=1.3)I996 format(lx,/I,2x.'xyz components of induced velocity:',!)
write (6,995) SIVel ,Error, PerErr

995 format(/I,5x, 'Theoretical Velocity =',f 0.7,!.I & 5x, 'Error - ',f 10.7,!,

A Sx,'Percent Absolute Error '.flO.7,/)

write(I0,994) Nodes.Core,Rad,Gamma

write(10,996)Irt(0* Vl~dKK13
write(l0,99S) SIVel,E-rror,PerErr

994 format(!,Sx,'Nodes ',6

k !,5x, 'Core 'Jf7.4,I a /,5x, 'Rad - 'Jf5.2.

/ ! 5 x , ' G a m m a -' , f 5 .2 .)1 9



stop
end

SUBROUTINE GENRNG (TWoPI.RAD. CORE2)

cccccccCcccCCCc cccccccccccccccccccccccccccccCCc ccccccccccC I
C

C This subroutine (SUBROIUTINE CENRNG) specifies the initial

C coordinates and core size of the nodes on the newly createdI

C vortex ring. CI
CcccccccCcccccccccCCccccCcCCccccccccccccccccCCccccCccccccCccCCCCCCcc

implicit real*8 (a-h~o-z)

DIMENSION RNODE(3, 10000)I

COMMON /POS/ RNODE
COMMON /PARM/ GAIMA,NODES,ALPHA.COEF

C *Calculate the initial coordinates.I

NDIV - 0

SECT - NODES

THETA = TWOPI/SECTI

DO 10 I-1.NODES

DIV -NOWV
ANGLE - DIV*THETA

RNODE(i.I) - RAD*DCOS(ANG.E)

RNODE(2,I) - RLAD*DSINCANGLE)
RNODE(,I) - 0.

N4DIV - NDIV + 1

10 CONTINUEI
RETURN

END

subroutine splve1(R~ef ,Core2,VelInd)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCI

C

C This subroutine (subroutine splvel) calculates the velocity

C induaced at the location of a specified node am a result of

C the vorticity of the filament(s). A spline is used to

C evaluate the Biot-Savart integrand at the node points. TheI
C trapezoid rule is used to evaluate the integral.

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCI

C * Dimension variables, define common block, and set constants.
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U implicit real*8 (a-h,o-z)

dimension Vellnd(3) ,RRef (3) ,RNode(3,10000) .Dr(3) .RDif (3) RDfXDx(3)

dimension DxDs(3, 10000) ,Vec(I0000)

--omn/POS/ RUode

common /PARM/ Gamma,Node9,ALPHA,COEF

data SMIN,SDEL /l.dO,l.dO/

GCoef -Gamma * COEF

C * Evaluate DxDs at the node points by spline approximation.

call dpsplderC iodes,S,'inSCel,RIode.DxDs)
C * Initialize velocity vector.

VelInd(l) =0.dO

VelInd(2) = 0.dO

VelInd(3) =OdO

C *' Solve the Biot-Savart integral by the trapezoid rule.

do 200 N = 1,Nodes

C * *Calculate relative position vector.I RDif (1) = RRef(1) - RNode(1.N)

RDif (2) = RRef(2) - RNode(2,N)

RDif (3) =RRef(3) - RNode(3,N)

RDif2 = (RDif(1) * RDif(l)) + (RDif(2) * RDif(2)) +

& CRDif(3) * RDif(3))

C *Calculate Biot-Savart integrand at node points.

BSDen =(RDif2 + (ALPHA * (Core2 + Core2)))**C-1.5d0)

RDfXDx(1) = (RDif (2) * DxDs(3,N)) - (RDif(3) * DxDs(2,1;))

RDfXDx(2) =(RDif(3) * DxDsC1.N)) - (RDif(1) * DxDs(3,N))

RDfXDx(3) - (RDif (1) * DxDs(2.N)) - (RDif(2) * DxDo(1,N))

VelInd(1) = VelInd(i) + (RDfXDx(1) * BSDen)IVelInd(2) = VelIndC2) + (RDfXDx(2) * BSDen)
Vellnd(3) = VelInd(3) + (RDfXDx(3) * BSDen)

200 continueIe~dt ~e e~d1
VelIlnd(2) = Coef * VelInd(2)
VelInd(2) - GCoef * VelInd(2)

return

end

I 121



subroutine dpsplderCNumPts,X~in.Delta,YData, Df Dx)

C

C FUNCTION:

C This subroutine (DPSPLDER) fits a set of evenly-spaced data

C with a periodic cubic spline and evaluate. the value of the

C first derivative at the data points. Double precision is used.

C

C READ-ONLY PARAMETERS:

C NumPts -> number of data points

C XMin ->value of independent variable at first data point

C Delta ->size of subinterval

C YData ->vector of 3-D data

C

C Of Dx ->value of first derivative of spline function at nodes

C

C NO0TES:

C The coefficient matrix of the vector of unknown second

C derivatives is tridiagonal with the exception of the elements

C (1,11 and MO,1. The matrix is stored in the three vectors

C DiagUp, DiagMn, and DiagLw, which represent the three diagonals.

C The elements DiagUpCN) and DiagLwCN) are not used.

C The vectors RowN and ColN represent the Nth row and column

C of the coefficient matrix. The last elements of RowN and

C ColN are not used.

C The vector YData should not include the last data point of the

C the periodic curve since it is assumed to be equal to the first.

C The number of data points must be at least 3 and at most 10000.

C

C AUTHOR:

C David Parekh (August 1984)

C

implicit real*8 (a-h,o-z)

dimension YDataC3.Numpts + 2),DfDx(3,NumPts)
dimension DiagUp(10000) ,DiagMn(10OOO) .DiagLw(1OOOO)

dimension RowN(1O000) ,ColN (10000)

dimension YVec(3,10000) ,D2fDx2(3,1002)

C Initialize vectors and NP1.

do 1 N -1,NumPts

DiagUp(N) -0.25d0
D i a g M n (N ) - d O1 

2



I

DiagLw(N) - 0.25d0

RowN (N) - O.dO

ColN(N) - O.dO

1 continue

NP1 - NumPts - 1

NP2 - NumPts - 2

RowN(1) - 0.25d0

RowN(NPI) - 0.25d0

ColN(I) - 0.25d0

ColN(NPI) = 0.25dO

C * Compute vector on right hand side of matrix equation.

do 10 I = 1,3

do 11 N = 2,NP1

YVec(I,N) = YData(IN-1) - (2 * YData(I,N)) + YData(I,N+1)

11 continue

YVec(I,1) = YData(I,NumPts) - (2 * YData(I,l)) + YData(I,2)

YVec(I,NumPts) - YData(I,NPI) - (2 * YData(I.NumPts)) +

& YData(I,I)

1 10 continue

C * Solve system of equations by Gauss-Jordan technique.

C * * Perform forward elimination and normalize diagonal elements.

C (Note: the lower diagonal is not updated to 0 to save cost.)

C (Note: the (1.1) element is assumed to be initially 1.)

C * * * Do all but the last set of operations.

do 20 NF = 2,NP1

NF1 = NF - 1

C * * * * Forward elimination of lower diagonal.

Factor = DiagLw(NFl) / DiagMn(NFl)

DiagMn(NF) = DiagMn(NF) - (Factor * DiagUP(NFI))

ColN(NF) = ColN(NF) - (Factor * ColN(NF))

do 21 I = 1.3

YVec(INF) = YVec(I,NF) - (Factor * YVec(I,NF1))

*21 continue

C * * * * Normalization of row NF.

DiagUp(NF) = DiagUp(NF) / DiagMn(NF)

ColN(NF) - ColN(NF) / DiagMn(NF)
do 22 I 1.3

YVec(I,NF) = YVec(I,NF) / DiagMn(NF)

22 continue

DiagMn(NF) = IdO

C * * * * Forward elimination of bottom row.

Factor = RowN(NFI)

RowN(NF) - RowN(NF) - (Factor * DiagUp(NFI))
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DiagMn(NumPts) - DiagMn(NumPts) - (Factor * ColN(NFI)) I
do 23 I - 1,3

YVec(I,NumPts) - YVec(INumPts) - (Factor*YVec(I,NFI)) I
23 continue

20 continue

C * * * Update certain elements.

DiagLw(NPI) - RowNCNP1)

DiagUp(NP1) = ColN(NPI)

C * * * Complete forward elimination process. I
Factor - DiagLw(NPI) / DiagMn(NPI)

DiagMn(NumPts) = DiagMn(NumPts) - (Factor * DiagUp(NPI))

do 25 I = 1,3

YVec(I,NumPts) - YVec(I.NumPts) - (Factor * YVec(I,NPI))

YVec(I=NumPts) - YVec(I.NumPts) / DiagMn(NumPts)

25 continue

DiagMn(NumPts) - 1.dO

C * * Perform back elimination and scale D2fDx2. Without scaling.

C the result would be (D2fDx2 / Coef) instead of D2fDx2.

C (Note: the upper diagonal is not updated to 0 to save cost.)

Delta2 = Delta * Delta

Coef = 6.dO / (4.dO * Delta2)

C * * Start back elimination process. 3
do 35 1 - 1,3

D2fDx2(INumPts) - Coef * YVec(I,NumPts)

YVec(I,NPI) = YVec(INP1) - (DiagUp(NPI)*YVec(I,NumPts))

D2fDx2(I,NPI) - Coef * YVec(INPI)

35 continue

C * * Complete back elimination process.

do 30 NB - NP2,1,-1

NB1 - N + 1

do 31 I = 1,3

YVec(I,NB) = YVec(INB) - (DiagUp(NB) * YVec(I,NBI))

- (ColN(NB) * YVec(I.NumPts)) 3
D2fDx2(I,NB) - Coef * YVec(I,NB)

31 continue

30 continue

C * * Specify periodicity conditions.

NI - NumPts + 1

N2 - NumPts + 2

do 36 I - 1,3

D2fDx2(I,111) - D2fDx2(I,1)

D2fDx2(I,N2) - D2fDx2(I,2)

YData(I,N11) - YData(I,l)

124 1
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136 F c ontnuI C * Evaluate DfDx.

Fc-Delta / C-6.dO)

do4 NP - 1.NumPts

do 41 1 1,33 Termi ( YDataCI,NPI) - YDataCI.NP)) / Delta

Tern2 =Fac * C2.dO * D2fDx2CI.NP)) + D2fDx2CINPI))

DfDx(INP) =Termi + Term2

*41 continue

40 continue

return

end
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I Appendix C

* TABLES OF PARAMETERS

I Table C.1. Parameters of Bifurcating Jet Simulations

Index Excitation Aa Sta a N
01 flapping 0.1 0.50 0.10 32
02 flapping 0.2 0.50 0.10 32
03 flapping 0.1 0.30 0.10 32
04 flapping 0.5 0.50 0.10 32
05 flapping 0.5 0.30 0.10 32
06 helical 0.5 0.30 0.10 32
07 helical 0.5 0.30 0.03 32
08 helical 0.5 0.30 0.10 32
09 helical 0.5 0.40 0.10 32
10 helical 0.5 0.35 0.10 32

11 helical 0.5 0.45 0.10 32
12 helical 0.5 0.25 0.10 32i 13 helical 0.5 0.43 0.10 32

14 helical 0.5 0.42 0.10 32
15 helical 0.1 0.20 0.10 32
16 helical 0.3 0.35 0.10 32
17 helical 0.3 0.32 0.10 16

18 helical 0.3 0.38 0.10 16
19 helical 0.3 0.30 0.10 16

20 helical 0.3 0.30 0.10 32

I
Table C.2. Comparison of Physical Parameters

I Lee & Reynolds (1985b) Current Work

Fluid Water Air
Re 2,800-10,000 10,000-100,000
Sta 0.3-0.7 0.40-0.65

U (m/s) 0.2-0.8 7-75
f (Hz) 5-40 130-2,400
D (cm) 1.27 2.15 & 2.00

I
U
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Table C.3. Parameters of Bifurcating Jet Experiments

Nuniia. :3,000 0,J 23,'0 Oj0 50,000 100,000

U (m/s) 7.1 14 18.4 36.9 75.6
D (cm) 2.15 2.15 2.00 2.00 2.00

v (cm 2 /s) 0.15 0.15 0.154 0.155 0.162
Actual Re 10,000 20,000 23,900 47,700 93,400

fa (Hz 180 386 516 1030 2060
fh (HzI 90 193 258 515 1030

St" 0.55 0.59 0.561 0.558 0.545
Sth 0.27 0.30 0.280 0.279 0.273 I

6/R 0.12 - 0.043 0.025 0.018
u'/U 0.013 0.006 0.005 0.003 0.002

I
I
I
I
U
I
I
I
I
I
I
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f Irc' 5. 1 8. Instantaneous pictures of axially-excited jet at different phases

of excitation (Re- 10,000, St, 0.55, and p, - 12).
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I" i giire 3.22. Axially-excited jet at Re 50,000 and Sta 0 55 and at 3
different Pa: (a) 1.4%, (b) 2.7%, (c) 6.5%, and (d) 13% F I
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Figure 3.26. Axially-excited jet at Re 25,000, Sta == 0.55,
and p~ 18r./ (f~ - 4)
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I g~ir .~2. IIeIically-exciteri jet at Re 25, 000, Sth 0.28,
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Iilr'5.36. Hfelically-excited jet at Re~ 100,000 and St, 0.27 and at,
dIifferent Ph: (a) 0.1%, (b) 0.2%, (c) 0.47o, and (d) 0.7% . F 17.
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Figure 3.45. Bifurcating jet at Re 100,000, Sta 0.55, Pa 1.4%., 3
and Ph 0.71%. F 1.
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c d
Hiire .5.47. Phase-evolution of bifurcating jet at Re -z100,000, Sta 0.55,

Pa =2.8%, and Ph =0.71%. F =-17.
The phase increment is 45'.
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Figure 5.57. Bifurcating jet at Re 100,000, Sta 0.55, Ph -0 36%",
and p, =(a) 0%, (b) 0.29%, (c) 1.4/%, (d) 2.8%. F 1.
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I Figiir~ .~.58. Bifurcating jet at Ie 100,000, Sta 0.55, Ph 0.36%,
and p~ z-j'a) 0.29%, (b) 1.4%, (c) 2.8%, (d) 5.5%. F 17.

I 239



4I

Fifruire 5.59. Bifurcating jet at Re 100,000, Sta 0.55, Pa 1.,
and p,0.71%. F =17.
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Figure 5.65a. Dependence of bifurcating jet's spreading angle on excitation N
amplitudes at Sta = 0.55 and at Re = 100,000. Axial and
helical excitations are both produced by the external acoustic drivers. I
Measurement uncertainty is ±50. Lines connect symbols
simply to enhance readability.
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Figure 5.65b. Dependence of bifurcating jet's spread]ing angle on excitation

amplitudes at 'Yi( - 0.55 and at Re -- 50,000). Axial andI helical excitations are both produced by the external acoustic dIrivers.
Measurement uncertainty is 15"'. Lines connect symbols3 simply to enhance readability.
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I Figure 5.67. Velocity profiles of natural and bifurcating jets at Re =100, 000
and z/D =8.5. Separate excitations are used in the bifurcating

jet, with Pa =i.8% and Ph =1.4%.
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